Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nat Commun ; 15(1): 1669, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396029

ABSTRACT

The bacterial pathogen Neisseria gonorrhoeae is able to invade epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, the mechanistic details for interactions between gonococcal OMVs and epithelial cells and their impact on intracellular survival are currently not established. Here, we show that gonococcal OMVs induce epithelial cell mitophagy to reduce mitochondrial secretion of reactive oxygen species (ROS) and enhance intracellular survival. We demonstrate that OMVs deliver PorB to mitochondria to dissipate the mitochondrial membrane potential, resulting in mitophagy induction through a conventional PINK1 and OPTN/NDP52 mechanism. Furthermore, PorB directly recruits the E3 ubiquitin ligase RNF213, which decorates PorB lysine residue 171 with K63-linked polyubiquitin to induce mitophagy in a p62-dependent manner. These results demonstrate a mechanism in which polyubiquitination of a bacterial virulence factor that targets mitochondria directs mitophagy processes to this organelle to prevent its secretion of deleterious ROS.


Subject(s)
Gonorrhea , Mitophagy , Humans , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Gonorrhea/microbiology , Epithelial Cells/metabolism , Ubiquitin-Protein Ligases/metabolism , Adenosine Triphosphatases/metabolism
2.
J Infect Dis ; 228(12): 1776-1788, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37926090

ABSTRACT

Neisseria gonorrhoeae establishes tight interactions with mucosal epithelia through activity of its type IV pilus, while pilus retraction forces activate autophagic responses toward invading gonococci. Here we studied pilus-independent epithelial cell responses and showed that pilus-negative gonococci residing in early and late endosomes are detected and targeted by nucleotide-binding oligomerization domain 1 (NOD1). NOD1 subsequently forms a complex with immunity-related guanosine triphosphatase M (IRGM) and autophagy-related 16-like 1 (ATG16L1) to activate autophagy and recruit microtubule-associated protein light chain 3 (LC3) to the intracellular bacteria. IRGM furthermore directly recruits syntaxin 17 (STX17), which is able to form tethering complexes with the lysosome. Importantly, IRGM-STX17 interactions are enhanced by LC3 but were still observed at lower levels in an LC3 knockout cell line. These findings demonstrate key roles for NOD1 and IRGM in the sensing of intracellular N gonorrhoeae and subsequent directing of the bacterium to the lysosome for degradation.


Subject(s)
Autophagy , Neisseria gonorrhoeae , Neisseria gonorrhoeae/metabolism , Epithelial Cells/metabolism , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Endosomes/metabolism
3.
Microbiol Spectr ; 11(6): e0244923, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37982635

ABSTRACT

IMPORTANCE: Ceftriaxone-based antimicrobial therapies for gonorrhea are threatened by waning ceftriaxone susceptibility levels and the global dissemination of the high-level ceftriaxone-resistant gonococcal FC428 clone. Combination therapy can be an effective strategy to restrain the development of ceftriaxone resistance, and for that purpose, it is important to find an alternative antimicrobial to replace azithromycin, which has recently been removed in some countries from the recommended ceftriaxone plus azithromycin dual-antimicrobial therapy. Ideally, the second antimicrobial should display synergistic activity with ceftriaxone. We hypothesized that bacitracin might display synergistic activity with ceftriaxone because of their distinct mechanisms targeting bacterial cell wall synthesis. In this study, we showed that bacitracin indeed displays synergistic activity with ceftriaxone against Neisseria gonorrhoeae. Importantly, strains associated with the FC428 clone appeared to be particularly susceptible to the bacitracin plus ceftriaxone combination, which might therefore be an interesting dual therapy for further in vivo testing.


Subject(s)
Ceftriaxone , Gonorrhea , Humans , Ceftriaxone/pharmacology , Gonorrhea/drug therapy , Gonorrhea/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azithromycin , Bacitracin/pharmacology , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Drug Resistance, Bacterial
4.
PLoS One ; 18(9): e0291717, 2023.
Article in English | MEDLINE | ID: mdl-37708155

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0181014.].

5.
Emerg Microbes Infect ; 12(2): 2249124, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37584947

ABSTRACT

ABSTRACTGlobal dissemination of high-level ceftriaxone-resistant Neisseria gonorrhoeae strains associated with the FC428 clone poses a threat to the efficacy ceftriaxone-based therapies. Vaccination is the best strategy to contain multidrug-resistant infections. In this study, we investigated the efficacy of MtrE and its surface Loop2 as vaccine antigens when combined with a Th1-polarizing adjuvant, which is expected to be beneficial for gonococcal vaccine development. Using in vitro dendritic cell maturation and T cell differentiation assays, CpG1826 was identified as the optimal Th1-polarizing adjuvant for MtrE and Loop2 displayed as linear epitope (Nloop2) or structural epitope (Intraloop2) on a carrier protein. Loop2-based antigens raised strongly Th1-polarized and bactericidal antibody responses in vaccinated mice. Furthermore, the vaccine formulations provided protection against a gonococcal challenge in mouse vaginal tract infection model when provided as prophylactic vaccines. Also, the vaccine formulations accelerated gonococcal clearance when provided as a single therapeutic dose to treat an already established infection, including against a strain associated with the FC428 clone. Therefore, this study demonstrated that MtrE and Loop 2 are effective gonococcal vaccine antigens when combined with the Th1-polarizing CpG1826 adjuvant.


Subject(s)
Ceftriaxone , Gonorrhea , Female , Mice , Animals , Gonorrhea/prevention & control , Bacterial Vaccines , Neisseria gonorrhoeae/genetics , Epitopes
6.
Microbiol Spectr ; 10(6): e0395222, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36350125

ABSTRACT

Alternative antimicrobial therapies are urgently required for the multidrug-resistant bacterial pathogen Neisseria gonorrhoeae, for which currently ceftriaxone is the only remaining recommended first-line therapy. Repurposing of drugs that are approved for other clinical applications offers an efficient approach for development of alternative antimicrobial therapies. Auranofin, cannabidivarin, and tolfenamic acid were recently identified to display antimicrobial activity against N. gonorrhoeae. Here, we investigated their activity against a collection of 575 multidrug-resistant clinical isolates. All three compounds displayed consistent antimicrobial activity against all isolates, including against strains associated with the high-level ceftriaxone-resistant FC428 clone, with both the mode and MIC90 for auranofin of 0.5 mg/L, while both the mode and MIC90 for cannabidivarin and tolfenamic acid were 8 mg/L. Correlations between MICs of ceftriaxone and auranofin, cannabidivarin or tolfenamic acid were low, indicating that development of cross-resistance is unlikely. Furthermore, antimicrobial synergy analysis between ceftriaxone and auranofin, cannabidivarin, or tolfenamic acid by determination of the fractional inhibitory concentration index (FICI) resulted in an interpretation of indifference. Finally, time-kill analyses showed that all three compounds are bactericidal against both the N. gonorrhoeae ATCC 49226 reference strain and an FC428-associated clinical isolate, with particularly cannabidivarin displaying rapid bactericidal activity. Overall, auranofin, cannabidivarin, and tolfenamic acid displayed consistent antimicrobial activity against multidrug-resistant N. gonorrhoeae, warranting further exploration of their suitability as alternative antimicrobials for treatment of gonococcal infections. IMPORTANCE Neisseria gonorrhoeae is a major public health concern because of the high incidence of gonorrhea and the increasingly limited options for antimicrobial therapy. Strains associated with the FC428 clone are a particular concern because they have shown global dissemination and they display high-level resistance against the currently recommended ceftriaxone therapy. Therefore, development of alternative antimicrobial therapies is urgently required to ensure treatment of gonorrhea remains available in the future. Repurposing of clinically approved drugs could be a rapid approach for the development of such alternative antimicrobials. In this study, we showed that repurposing of auranofin, cannabidivarin, and tolfenamic acid for antimicrobial therapy of gonorrhea deserves further clinical explorations because these compounds displayed consistent antimicrobial activity against a large collection of contemporary multidrug-resistant gonococcal isolates that included strains associated with the FC428 clone.


Subject(s)
Anti-Infective Agents , Gonorrhea , Humans , Neisseria gonorrhoeae , Gonorrhea/epidemiology , Ceftriaxone/pharmacology , Auranofin/pharmacology , Auranofin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial
7.
Int J Med Microbiol ; 312(6): 151561, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36087399

ABSTRACT

Klebsiella pneumoniae is a gram-negative bacterium that can cause many diseases in hospitals and communities. Intestinal K. pneumoniae infections are relatively rare. Most K. pneumoniae infections begin with the colonization of the gastrointestinal system. In this study, clinically isolated K. pneumoniae strains were used to infect intestinal epithelial Caco-2 cells to study the possible intestinal translocation mechanism of K. pneumoniae. We found that of the three K. pneumoniae strains tested, KP1821 exhibited the strongest adhesive and invasive abilities and that the adhesion to Caco-2 intestinal epithelial cells was affected by the acidic environment of the stomach. Transcriptome sequencing revealed the involvement of molecules associated with the extracellular matrix and cell adhesion, inflammatory response, calcium ion and transforming growth factor ß (TGF-ß) signaling pathways, and other abnormalities in biological processes and cell signaling pathways. Additionally, tolloid-like protein 1 (TLL1) was significantly upregulated. Knocking down TLL1 with shRNA significantly reduced KP1821's ability to invade and adhere to intestinal epithelial cells. TLL1 is involved in the activation of the TGF-ß signaling pathway. Inhibition of this pathway using the inhibitor SB431542 induced significantly reduced adhesion and invasion capabilities of KP1821. Our findings demonstrate that TLL1 participates in K. pneumoniae adhesion and invasion of intestinal epithelial cells by activating the TGF-ß signaling pathway.


Subject(s)
Calcium , Klebsiella pneumoniae , Caco-2 Cells , Epithelial Cells/microbiology , Humans , Klebsiella pneumoniae/physiology , RNA, Small Interfering , Signal Transduction , Tolloid-Like Metalloproteinases , Transforming Growth Factor beta , Transforming Growth Factor beta1
8.
BMC Microbiol ; 22(1): 176, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35804301

ABSTRACT

BACKGROUND: Staphylococcus aureus is a leading cause for morbidity and mortality associated with skin and burn wound infections. Therapeutic options for methicillin-resistant S. aureus (MRSA) have dwindled and therefore alternative treatments are urgently needed. In this study, the immuno-stimulating and anti-MRSA effects of cyclic di-guanosine monophosphate (c-di-GMP), a uniquely bacterial second messenger and immuno-modulator, were investigated in HaCaT human epidermal keratinocytes and a murine skin wound infection model. RESULTS: Stimulation of HaCaT cells with 125 µM c-di-GMP for 12 h prior to MRSA challenge resulted in a 20-fold reduction in bacterial colonization compared with untreated control cells, which was not the result of a direct c-di-GMP toxic effect, since bacterial viability was not affected by this dose in the absence of HaCaT cells. C-di-GMP-stimulated or MRSA-challenged HaCaT cells displayed enhanced secretion of the antimicrobial peptides human ß-defensin 1 (hBD-1), hBD-2, hBD-3 and LL-37, but for hBD1 and LL-37 the responses were additive in a c-di-GMP-dose-dependent manner. Secretion of the chemokines CXCL1 and CXCL8 was also elevated after stimulation of HaCaT cells with lower c-di-GMP doses and peaked at a dose of 5 µM. Finally, pre-treatment of mice with a 200 nmol dose of c-di-GMP 24 h before a challenge with MRSA in skin wound infection model resulted in a major reduction (up to 1,100-fold by day 2) in bacterial CFU counts recovered from challenged skin tissue sections compared PBS-treated control animals. Tissue sections displayed inflammatory cell infiltration and enhanced neutrophil influx in the c-di-GMP pre-treated animals, which might account for the reduced ability of MRSA to colonize c-di-GMP pre-treated mice. CONCLUSIONS: These results demonstrate that c-di-GMP is a potent immuno-modulator that can stimulate anti-MRSA immune responses in vivo and might therefore be a suitable alternative prophylactic or therapeutic agent for MRSA skin or burn wound infections.


Subject(s)
Adjuvants, Immunologic , Cyclic GMP/analogs & derivatives , Immunity, Innate , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Skin Infections , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Animals , Burns/complications , Cyclic GMP/pharmacology , Cyclic GMP/therapeutic use , Disease Models, Animal , Humans , Immunity, Innate/drug effects , Keratinocytes/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Staphylococcal Skin Infections/drug therapy
9.
J Antimicrob Chemother ; 77(9): 2461-2469, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35762496

ABSTRACT

OBJECTIVES: Ceftriaxone therapy for gonorrhoea has become under increasing pressure due to waning susceptibility levels and emergence of high-level resistant strains such as the FC428 clone. Moenomycin was recently identified to display potent anti-gonococcal activity against some reference strains. Therefore, the aim of this study was to investigate moenomycin in vitro and in vivo antimicrobial activity. METHODS: Moenomycin in vitro antimicrobial activity was investigated against 575 clinical isolates, including strains associated with the FC428 clone, using the agar dilution method. Moenomycin in vivo activity was investigated in a mouse vaginal tract gonococcal infection model. RESULTS: The moenomycin MIC range for the strain collection was 0.004-0.06 mg/L, with a MIC50 of 0.016 mg/L and a MIC90 of 0.03 mg/L. The correlation between moenomycin and ceftriaxone susceptibility levels was poor (R = 0.13), while the fractional inhibitory concentration index (FICI) resulted in indifference for all tested strains. Therefore, development of cross-resistance between moenomycin and ceftriaxone is unlikely for N. gonorrhoeae. Determination of the moenomycin mode of activity against N. gonorrhoeae by time-kill assays showed that moenomycin is bactericidal, with over 104-fold inactivation observed after 4 h exposure. Finally, an intramuscular moenomycin dose of 10 mg/kg given on 2 consecutive days was able to clear a gonococcal infection in a mouse vaginal tract infection model within 1-3 days after the second dose, which was significantly faster than for mice treated with the vehicle control (P < 0.0001). CONCLUSIONS: Moenomycin displays potent in vitro and in vivo antimicrobial activity against N. gonorrhoeae, warranting further exploration as alternative therapy.


Subject(s)
Bambermycins , Gonorrhea , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Drug Resistance, Bacterial , Female , Gonorrhea/drug therapy , Mice , Microbial Sensitivity Tests , Neisseria gonorrhoeae
10.
Cell Mol Immunol ; 18(10): 2372-2382, 2021 10.
Article in English | MEDLINE | ID: mdl-34480147

ABSTRACT

The nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome is essential in inflammation and inflammatory disorders. Phosphorylation at various sites on NLRP3 differentially regulates inflammasome activation. The Ser725 phosphorylation site on NLRP3 is depicted in multiple inflammasome activation scenarios, but the importance and regulation of this site has not been clarified. The present study revealed that the phosphorylation of Ser725 was an essential step for the priming of the NLRP3 inflammasome in macrophages. We also showed that Ser725 was directly phosphorylated by misshapen (Msn)/NIK-related kinase 1 (MINK1), depending on the direct interaction between MINK1 and the NLRP3 LRR domain. MINK1 deficiency reduced NLRP3 activation and suppressed inflammatory responses in mouse models of acute sepsis and peritonitis. Reactive oxygen species (ROS) upregulated the kinase activity of MINK1 and subsequently promoted inflammasome priming via NLRP3 Ser725 phosphorylation. Eliminating ROS suppressed NLRP3 activation and reduced sepsis and peritonitis symptoms in a MINK1-dependent manner. Altogether, our study reveals a direct regulation of the NLRP3 inflammasome by Msn family kinase MINK1 and suggests that modulation of MINK1 activity is a potential intervention strategy for inflammasome-related diseases.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Inflammation , Macrophages , Mice , Reactive Oxygen Species
11.
Comput Math Methods Med ; 2021: 9932088, 2021.
Article in English | MEDLINE | ID: mdl-34367321

ABSTRACT

OBJECTIVE: The aim of the study is to explore the prognosis value of PTPRH in patients with lung adenocarcinoma (LUAD). METHODS: Oncomine, UALCAN, and GEPIA databases were employed to examine the differential expression of PTPRH between LUAD and adjacent tissues. 100 pairs of LUAD and adjacent tissue samples were involved in this study. qRT-PCR and immunohistochemical staining were performed. Meanwhile, we analyzed The Cancer Genome Atlas (TCGA) data to investigate the correlation between PTPRH gene expression and clinicopathological characteristics. Kaplan-Meier analysis and univariate and multivariate Cox analyses were performed to estimate the relationship between PTPRH expression and LUAD prognosis. The evaluation performance was verified by drawing a ROC curve. In addition, through GSEA, the changes of PTPRH expression were analyzed by GSEA to screen out primarily affected signaling pathway. RESULTS: Oncomine, UALCAN, and GEPIA databases showed that the mRNA expression of PTPRH in LUAD tissues was significantly higher than that in adjacent tissues. qRT-PCR and immunohistochemical staining indicated the mRNA and protein levels of PTPRH in LUAD tissues were markedly upregulated. TCGA data showed that the expression of PTPRH was significantly correlated with T stage and disease stage. Kaplan-Meier analysis showed that the patients with high PTPRH expression had a poor prognosis. Univariate and multivariate Cox analyses exhibited that PTPRH expression could act as an independent prognostic factor for LUAD. The ROC curve showed that PTPRH combined with various clinicopathological features could effectively predict the prognosis of LUAD. Finally, GSEA indicated that changes in PTPRH expression level may affect p53, VEGF, Notch, and mTOR cancer-related signaling pathways. CONCLUSION: Our results demonstrated that PTPRH was highly expressed in LUAD and may be closely correlated with the poor prognosis of LUAD patients.


Subject(s)
Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Computational Biology , DNA Copy Number Variations , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , Proportional Hazards Models , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Up-Regulation
12.
Z Naturforsch C J Biosci ; 76(1-2): 27-34, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33725750

ABSTRACT

Pulmonary arterial hypertension (PAH) is a group of diseases with an increase of pulmonary artery pressure (PAP) and pulmonary vascular resistance. Here, the effects of safflower injection, a preparation of Chinese herbs, was investigated in a monocrotaline (MCT)-induced PAH rat model. PAP, carotid artery pressure (CAP), and the right ventricular hypertrophy index (RVHI) increased in the PAH group, while safflower injection was able to inhibit this increase to similar levels as observed in the normal group. The arteriole wall of the lungs and cardiac muscle were thickened and edema was observed in the PAH group, while these pathologies were improved in the herb-treated group in a dose-dependent manner. MCT treatment induced proliferation of pulmonary artery smooth muscle cells (PASMCs), which was inhibited by safflower injection in a dose-dependent manner. Our experimental results demonstrated that safflower injection can regulate pulmonary arterial remodeling through affecting the expression of connective tissue growth factor, transforming growth factor-ß, integrin, collagen or fibronectin, which subsequently affected the thicknesses of the arteriole walls of the lungs and cardiac muscle, and thereby benefits the control of PAH. This means safflower injection improved the abnormalities in PAP, CAP and RVHI, and pulmonary arterial remodeling through regulation of remodeling factors.


Subject(s)
Carthamus tinctorius/chemistry , Drugs, Chinese Herbal/therapeutic use , Pulmonary Arterial Hypertension/drug therapy , Animals , Blood Pressure , Cell Proliferation , Cells, Cultured , Collagen/metabolism , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Fibronectins/metabolism , Injections , Integrins/metabolism , Lung/drug effects , Lung/metabolism , Male , Monocrotaline/toxicity , Myocardium/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , Pulmonary Arterial Hypertension/etiology , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/metabolism , Ventricular Remodeling
14.
J Infect Dis ; 222(6): 1008-1020, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32274497

ABSTRACT

BACKGROUND: Leptospirosis is a global zoonotic infectious disease caused by Leptospira interrogans. The pathogen rapidly invades into hosts and diffuses from bloodstream into internal organs and excretes from urine to cause transmission of leptospirosis. However, the mechanism of leptospiral invasiveness remains poorly understood. METHODS: Proteolytic activity of M16-type metallopeptidases (Lep-MP1/2/3) of L. interrogans was determined by spectrophotometry. Expression and secretion of Lep-MP1/2/3 during infection of cells were detected by quantitative reverse-transcription polymerase chain reaction, Western blot assay, and confocal microscopy. Deletion and complementation mutants of the genes encoding Lep-MP1/2/3 were generated to determine the roles of Lep-MP1/2/3 in invasiveness using transwell assay and virulence in hamsters. RESULTS: Leptospira interrogans but not saprophytic Leptospira biflexa strains were detectable for Lep-MP-1/2/3-encoding genes. rLep-MP1/2/3 hydrolyzed extracellular matrix proteins, but rLep-MP1/3 displayed stronger proteolysis than rLep-MP2, with 123.179/340.136 µmol/L Km and 0.154/0.159 s-1 Kcat values. Expression, secretion and translocation of Lep-MP1/2/3 during infection of cells were increased. ΔMP1/3 but not ΔMP2 mutant presented attenuated transmigration through cell monolayers, decreased leptospiral loading in the blood, lungs, liver, kidneys, and urine, and 10/13-fold decreased 50% lethal dose and milder histopathologic injury in hamsters. CONCLUSIONS: Lep-MP1 and 3 are involved in virulence of L. interrogans in invasion into hosts and diffusion in vivo, and transmission of leptospirosis.


Subject(s)
Leptospira interrogans/classification , Leptospira interrogans/genetics , Leptospirosis/microbiology , Leptospirosis/transmission , Metalloproteases/genetics , Animals , Bacterial Load , Biopsy , Cricetinae , Disease Models, Animal , Enzyme Activation , Gene Expression Regulation, Bacterial , Leptospira interrogans/enzymology , Leptospira interrogans/pathogenicity , Leptospirosis/pathology , Male , Metalloproteases/metabolism , Mutation , Proteolysis , Rabbits , Virulence/genetics , Virulence Factors/genetics
15.
Elife ; 82019 04 23.
Article in English | MEDLINE | ID: mdl-31012847

ABSTRACT

Many bacterial pathogens can cause septicemia and spread from the bloodstream into internal organs. During leptospirosis, individuals are infected by contact with Leptospira-containing animal urine-contaminated water. The spirochetes invade internal organs after septicemia to cause disease aggravation, but the mechanism of leptospiral excretion and spreading remains unknown. Here, we demonstrated that Leptospira interrogans entered human/mouse endothelial and epithelial cells and fibroblasts by caveolae/integrin-ß1-PI3K/FAK-mediated microfilament-dependent endocytosis to form Leptospira (Lep)-vesicles that did not fuse with lysosomes. Lep-vesicles recruited Rab5/Rab11 and Sec/Exo-SNARE proteins in endocytic recycling and vesicular transport systems for intracellular transport and release by SNARE-complex/FAK-mediated microfilament/microtubule-dependent exocytosis. Both intracellular leptospires and infected cells maintained their viability. Leptospiral propagation was only observed in mouse fibroblasts. Our study revealed that L. interrogans utilizes endocytic recycling and vesicular transport systems for transcytosis across endothelial or epithelial barrier in blood vessels or renal tubules, which contributes to spreading in vivo and transmission of leptospirosis.


Subject(s)
Endothelial Cells/microbiology , Epithelial Cells/microbiology , Fibroblasts/microbiology , Host-Pathogen Interactions , Leptospira interrogans/physiology , Transcytosis , Animals , Cell Survival , Cytoplasmic Vesicles/microbiology , Endocytosis , Humans , Leptospirosis , Mice , Microbial Viability
16.
APMIS ; 127(4): 202-216, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30908774

ABSTRACT

Leptospirosis is a zoonotic disease caused by pathogenic Leptospira. However, understanding of the pathogenic mechanism of Leptospira is still elusive due to the limited number of genetic tools available for this microorganism. Currently, the reason for the genetic inaccessibility of Leptospira is still unknown. It is well known that as an acquired immunity of bacteria, Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR-associated gene (CRISPR-Cas) systems can help bacteria against invading mobile genetic elements. In this study, the occurrence and diversity of CRISPR-Cas systems in 41 genomes of Leptospira strains were investigated. Three subtypes (subtype I-B, subtype I-C and subtype I-E) of CRISPR-Cas systems were identified in both pathogenic and intermediate Leptospira species but not in saprophytic species. Noteworthy, the majority of pathogenic species harbor two different types of CRISPR-Cas systems (subtype I-B and subtype I-E). Furthermore, Cas2 protein of subtype I-C in L. interrogans exhibited a metal-dependent DNase activity in a nonspecific manner. CRISPR spacers in subtype I-B are highly conserved within the same serovars and hypervariable across different serovars of L. interrogans. Based on the subtype I-B CRISPR arrays, the serotypes of different L. interrogans strains were easily identified. Investigation of the origin of CRISPR spacers showed that 192 spacers (23.5%) matched to mobile genetic elements, indicating CRISPR-Cas systems may play an important role in the defense of foreign invading DNA.


Subject(s)
CRISPR-Cas Systems , Genetic Variation , Genotype , Genotyping Techniques/methods , Leptospira interrogans/classification , Leptospira interrogans/genetics , Genome, Bacterial , Leptospira interrogans/enzymology
17.
Cell Microbiol ; 21(1): e12959, 2019 01.
Article in English | MEDLINE | ID: mdl-30278102

ABSTRACT

Leptospira interrogans causes widespread leptospirosis in humans and animals, with major symptoms of jaundice and haemorrhage. Sph2, a member of the sphingomyelinase haemolysins, is an important virulence factor for leptospire. In this study, the function and mechanism of Sph2 in the pathogenesis of leptospirosis were investigated to further understand the pathogenesis of leptospire. Real-time PCR analysis of expression levels during cell invasion showed that sph2 gene expression was transiently induced in human umbilical vein endothelial cells (HUVECs), human embryo liver cells (L02), and human epithelial lung cells (L132), with expression levels reaching a peak after 45 min of infection. Further functional analysis of recombinant Sph2 (rSph2) by LDH assays and confocal microscopy showed that rSph2 can be internalised by cells both by causing cell membrane damage and by a damage-independent clathrin-mediated endocytosis pathway. Subsequently, rSph2 is able to translocate to mitochondria, which led to an increase in the levels of reactive oxygen species (ROS) and a decrease of the mitochondrial membrane potential (ΔΨm ). Further flowcytometry analyses after rSph2 exposure showed that 28.7%, 31%, and 27.3% of the HUVEC, L02, and L132 cells, respectively, became apoptotic. Because apoptosis could be decreased with the ROS inhibitor N-acetyl cysteine, these experiments suggested that rSph2 triggers apoptosis through mitochondrial membrane damage and ROS elevation. The ability of leptospiral haemolysin rSph2 to cause apoptosis likely contributes to the pathogenesis of leptospirosis.


Subject(s)
Apoptosis/drug effects , Hemolysin Proteins/metabolism , Leptospira interrogans/pathogenicity , Mitochondrial Membranes/drug effects , Reactive Oxygen Species/metabolism , Virulence Factors/metabolism , Cell Survival/drug effects , Cells, Cultured , Endocytosis , Humans , Leptospira interrogans/growth & development , Protein Transport
18.
EBioMedicine ; 37: 428-441, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30337247

ABSTRACT

BACKGROUD: Leptospira interrogans is the major causative agent of leptospirosis, a worldwide zoonotic disease. Hemorrhage is a typical pathological feature of leptospirosis. Binding of von Willebrand factor (vWF) to platelet glycoprotein-Ibα (GPIbα) is a crucial step in initiation of platelet aggregation. The products of L. interrogans vwa-I and vwa-II genes contain vWF-A domains, but their ability to induce hemorrhage has not been determined. METHODS: Human (Hu)-platelet- and Hu-GPIbα-binding abilities of the recombinant proteins expressed by L. interrogans strain Lai vwa-I and vwa-II genes (rLep-vWA-I and rLep-vWA-II) were detected by flowcytometry, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Hu-platelet aggregation and its signaling kinases and active components were detected by lumiaggregometry, Western analysis, spectrophotometry and confocal microscopy. Hu-GPIbα-binding sites in rLep-vWA-I and rLep-vWA-II were identified by SPR/ITC measurements. FINDINGS: Both rLep-vWA-I and rLep-vWA-II were able to bind to Hu-platelets and inhibit rHu-vWF/ristocetin-induced Hu-platelet aggregation, but Hu-GPIbα-IgG, rLep-vWA-I-IgG and rLep-vWA-II-IgG blocked this binding or inhibition. SPR and ITC revealed a tight interaction between Hu-GPIbα and rLep-vWA-I/rLep-vWA-II with KD values of 3.87 × 10-7-8.65 × 10-8 M. Hu-GPIbα-binding of rL-vWA-I/rL-vWA-II neither activated the PI3K/AKT-ERK and PLC/PKC kinases nor affected the NO, cGMP, ADP, Ca2+ and TXA2 levels in Hu-platelets. G13/R36/G47 in Lep-vWA-I and G76/Q126 in Lep-vWA-II were confirmed as the Hu-GPIbα-binding sites. Injection of rLep-vWA-I or rLep-vWA-II in mice resulted in diffuse pulmonary and focal renal hemorrhage but this hemorrhage was blocked by rLep-vWA-I-IgG or rLep-vWA-II-IgG. INTERPRETATION: The products of L. interrogans vwa-I and vwa-II genes induce hemorrhage by competitive inhibition of vWF-mediated Hu-platelet aggregation.


Subject(s)
Bacterial Proteins/metabolism , Hemorrhage/metabolism , Leptospira interrogans/metabolism , Leptospirosis/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , von Willebrand Factor/metabolism , Animals , Bacterial Proteins/genetics , Female , Hemorrhage/genetics , Human Umbilical Vein Endothelial Cells , Humans , Leptospira interrogans/genetics , Leptospirosis/genetics , Mice , Platelet Glycoprotein GPIb-IX Complex/genetics , von Willebrand Factor/genetics
19.
Emerg Microbes Infect ; 7(1): 135, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30061622

ABSTRACT

Leptospira interrogans is the major causative agent of leptospirosis, an emerging, globally spreading zoonotic infectious disease. The pathogen induces macrophage apoptosis, but the molecular basis and mechanism remain unknown. In the present study, we found that L. interrogans caused apoptosis of phagocytosis-inhibited macrophages, and the product of the L. interrogans LB047 gene (Lep-OMP047) was the unique protein captured by mouse and human Fas proteins. The recombinant expressed Lep-OMP047 (rLep-OMP047) strongly bound mouse and human Fas proteins with equilibrium association constant (KD) values of 5.20 × 10-6 to 2.84 × 10-9 M according to surface plasmon resonance measurement and isothermal titration calorimetry. Flow-cytometric examination showed that 5 µg rLep-OMP047 or 1 µg lipopolysaccharide of L. interrogans (Lep-LPS) caused 43.70% or 21.90% early apoptosis in mouse J774A.1 macrophages and 28.41% or 15.80% for PMA-differentiated human THP-1 macrophages, respectively, but the apoptosis was blocked by Fas-antagonizing IgGs, Fas siRNAs, and caspase-8/-3 inhibitors. Moreover, Lep-OMP047 was significantly upregulated during infection of macrophages. Lep-LPS promoted the expression and cytomembrane translocation of Fas and FasL in macrophages. The JNK and p38 MAPK but not ERK signaling pathways, as well as the transcription factors c-Jun and ATF2 but not CHOP, mediated Lep-LPS-induced Fas/FasL expression and translocation. TLR2 but not TLR4 mediated Lep-LPS-induced JNK/p38 MAPK activation. Therefore, we demonstrated that a novel Fas-binding OMP and LPS of L. interrogans induce macrophage apoptosis through the Fas/FasL-caspase-8/-3 pathway.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Leptospira interrogans/metabolism , Leptospirosis/metabolism , Macrophages/cytology , Signal Transduction , Animals , Apoptosis , Bacterial Outer Membrane Proteins/genetics , Caspase 3/genetics , Caspase 3/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Host-Pathogen Interactions , Humans , Leptospira interrogans/genetics , Leptospirosis/genetics , Leptospirosis/microbiology , Leptospirosis/physiopathology , Lipopolysaccharides/metabolism , Macrophages/metabolism , Mice , fas Receptor/genetics , fas Receptor/metabolism
20.
Front Microbiol ; 9: 764, 2018.
Article in English | MEDLINE | ID: mdl-29755425

ABSTRACT

Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species. The most common species, Leptospira interrogans, can transfer from contaminated soil or water to the human body. It is able to survive these changing environments through sensing and responding to the changes of environmental cues. Cyclic di-GMP (c-di-GMP) is a special secondary messenger in bacteria, which can respond to the environment and regulate diverse bacterial behaviors. The c-di-GMP levels in bacterial cells are regulated by diguanylatecyclases (DGC) and phosphodiesterases (PDE), which are responsible for synthesizing or hydrolyzing c-di-GMP, respectively. In this study, distribution and phylogenetics of c-di-GMP metabolic genes among 15 leptospiral species were systematically analyzed. Bioinformatics analysis revealed that leptospiral species contain a multitude of c-di-GMP metabolic genes. C-di-GMP metabolic genes in L. interrogans strain Lai 56601 were further analyzed and the results showed that these genes have very diverse expression patterns. Most of the putative DGCs and PDEs possess enzymatic activities, as determined by riboswitch-based dual-fluorescence reporters in vivo or HPLC in vitro. Furtherer analysis of subdomains from GGDEF-containing proteins revealed that the ability to synthesize c-di-GMP was lost when the GAF domain from LA1483 and PAS domain from LA2932 were deleted, while deletion of the REC domain from LA2528 did not affect its ability to synthesize c-di-GMP. Furthermore, high temperatures generally resulted in low c-di-GMP concentrations in L. interrogans and most of the c-di-GMP metabolic genes exhibited differential temperature regulation. Also, infection of murine J774A.1 cells resulted in reduced c-di-GMP levels, while no significant change of c-di-GMP metabolic genes on transcriptional levels were observed during the infection of J774A.1 cells. Taken together, these results provide a basic platform for future studies of c-di-GMP signaling pathways in Leptospira.

SELECTION OF CITATIONS
SEARCH DETAIL
...