Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 311: 116474, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37031823

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The imbalance between M1-and M2-polarized macrophages is one of the major pathophysiological changes in RA. Therefore, targeted macrophage polarization may be an effective therapy for RA. Koumine, an alkaloid monomer with the highest content and low toxicity in Gelsemium elegans Benth., has the effect of treating RA by playing an immunomodulatory role by influencing various immune cells. However, whether koumine affects macrophage polarization in RA and the associated molecular mechanisms remain unknown. AIM OF THE STUDY: To investigate the mechanism of the anti-RA effect of koumine on macrophage polarization. MATERIALS AND METHODS: The effect of koumine on macrophage polarization was investigated in vivo and in vitro. We first explored the effects of koumine on AIA rats and detected the levels of M1/M2 macrophage polarization markers in the spleen by western blotting. Then, we explored the regulatory effect of koumine on M1/M2 macrophage polarization and the effect on the PI3K/AKT signaling pathway in vitro. Finally, we verified the effects of koumine on macrophage polarization in CIA mice. RESULTS: We found that koumine alleviated symptoms, including relieving pain, reducing joint redness and swelling in AIA rats and restoring the M1/M2 macrophage balance in vivo. Interestingly, koumine had an inhibitory effect on both M1 and M2 macrophage polarization in vitro, but it had a stronger inhibitory effect on M1 macrophage. In a mixed polarization experiment, koumine mainly inhibited M1 macrophage polarization and had an inhibitory effect on the PI3K/AKT signaling pathway. Finally, we found that koumine had therapeutic effects on CIA mice, regulated macrophage polarization and inhibited the PI3K/AKT signaling pathway. CONCLUSIONS: Our results reveal that koumine regulates macrophage polarization through the PI3K/AKT signaling pathway. This may be one of the important mechanisms of its anti-RA effect, which provides a theoretical and scientific basis for the possible clinical application of koumine.


Subject(s)
Arthritis, Rheumatoid , Proto-Oncogene Proteins c-akt , Rats , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Macrophages
2.
Eur J Pharmacol ; 937: 175387, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36372275

ABSTRACT

Koumine, an alkaloid, exerts therapeutic effects against rheumatoid arthritis (RA), and thus may have a potential application in novel treatment strategies against this disease. Herein, we investigated the regulatory effect of koumine on Th cell polarization using a "pyramid" structure model to elucidate the mechanism underlying its therapeutic effect on RA. The third layer of the model comprises the cytokine secretion layer, in which the effects of koumine on the balance of Th-related cytokines were investigated in mice with collagen-induced arthritis (CIA). Koumine showed significant therapeutic effects and reversed the imbalance of Th1/Th2 and Th17/Treg cytokines. In the Th cell polarization layer, the effects of koumine on the relative numbers of Th cell subsets in splenocytes of rats with CIA were examined. Koumine attenuated both of the increased Th1/Th2 and Th17/Treg subset ratios accompanied with its therapeutic effects. Finally, the primary cultured splenocytes from BALB/c mice were used to further investigate the effect of koumine on Th cell activation by evaluating cell proliferation induced by concanavalin A (Con A), lipopolysaccharides (LPS) and phytohemagglutinin (PHA). Koumine inhibited the cell proliferation responses and its effects on proliferation induced by Con A and PHA were greater than those by LPS, showing the relatively selective inhibition on the proliferation of Th cells. Our results suggest that koumine might restore the homeostasis of the network system with Th subsets and cytokines by inhibiting the activation of T cells, subsequently regulating the polarization of Th subsets and the downstream imbalance of pro/anti-inflammatory cytokines in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Rats , Animals , Lipopolysaccharides/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Th17 Cells , T-Lymphocytes, Regulatory , Cytokines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...