Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
J Ethnopharmacol ; 330: 118148, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38583734

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY: To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS: Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS: 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION: The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.


Subject(s)
Anemia , Cyclophosphamide , Mice, Inbred BALB C , Panax notoginseng , Saponins , Animals , Cyclophosphamide/toxicity , Panax notoginseng/chemistry , Mice , Saponins/pharmacology , Anemia/chemically induced , Anemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Cell Line, Tumor , Female
2.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1483-1490, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005835

ABSTRACT

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Subject(s)
Cadmium , Panax notoginseng , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/pharmacology , Brassinosteroids/pharmacology , Chlorophyll/metabolism , Plant Roots/metabolism , Stress, Physiological
3.
J Control Release ; 354: 664-679, 2023 02.
Article in English | MEDLINE | ID: mdl-36682725

ABSTRACT

Deep eutectic solvents (DES) have demonstrated their ability to facilitate skin penetrability of rigid nanoparticles (NPs). Here, we reported a feasible and simple transdermal delivery strategy using mesoporous silica nanoparticles impregnated in DES hydrogels for topical management of rheumatoid arthritis (RA). To achieve this goal, nanoceria was immobilized within a silica nanoparticle matrix (MSN) and encapsulated with methotrexate (MTX). The functionalized nanoparticles were first engineered in an Arginine (Arg)-citric acid (CA) DES and then transferred to the carbomer hydrogel matrix. Due to the strong affinity of DES hydrogels to the skin, combined with solvent-driven "Drag" effects, the prepared DES-MSNs hydrogels produced dynamic mobility of MSNs through skin layers, resulting in high skin penetrability. After application to the skin, the hydrogel solvent drove the rigid NPs across the skin barrier in a nonintrusive manner, resulting in sustained penetration and accumulation of MSNs at subcutaneous inflammation sites. Subsequently, the MTX payload exerted a direct therapeutic effect, while nanoceria moderated the inflammatory microenvironment by initiating reactive oxygen species (ROS) scavenging and transformation of the macrophage phenotype. In this way, the synergistic action of the combination of immuno- and chemotherapy of the drug and its carrier on RA was achieved. Our work provides a novel strategy for multisite regulation and controlled management of RA in a noninvasive way.


Subject(s)
Arthritis, Rheumatoid , Nanoparticles , Humans , Hydrogels , Deep Eutectic Solvents , Methotrexate , Silicon Dioxide
4.
Pharmaceutics ; 14(11)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36365084

ABSTRACT

In recent years, deep eutectic systems (DES) emerged as novel vehicles for facilitating the transdermal delivery of various drugs, including polysaccharides, proteins, insulin, vaccine, nanoparticles, and herb extracts. The objective of this study is to conduct a comprehensive review of the application of DES to transdermal drug delivery, based on previous work and the reported references. Following a brief overview, the roles of DES in TDDS, the modes of action, as well as the structure-activity relationship of DES are discussed. Particularly, the skin permeation of active macromolecules and rigid nanoparticles, which are the defining characteristics of DES, are extensively discussed. The objective is to provide a comprehensive understanding of the current investigation and development of DES-based transdermal delivery systems, as well as a framework for the construction of novel DES-TDDS in the future.

5.
Pharmaceutics ; 14(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36015329

ABSTRACT

Herb polysaccharides (HPS) have been studied extensively for their healthcare applications. Though the toxicity was not fully clarified, HPS were widely accepted for their biodegradability and biocompatibility. In addition, as carbohydrate polymers with a unique chemical composition, molecular weight, and functional group profile, HPS can be conjugated, cross-linked, and functionally modified. Thus, they are great candidates for the fabrication of drug delivery systems (DDS). HPS-based DDS (HPS-DDS) can bypass phagocytosis by the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting therapeutic effects. In this review, we focus on the application of HPS as components of immunoregulatory DDS. We summarize the principles governing the fabrication of HPS-DDS, including nanoparticles, micelles, liposomes, microemulsions, hydrogels, and microneedles. In addition, we discuss the role of HPS in DDS for immunotherapy. This comprehensive review provides valuable insights that could guide the design of effective HPS-DDS.

6.
Sci Rep ; 7(1): 1620, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28487539

ABSTRACT

An isobaric tags for relative and absolute quantitative (iTRAQ)-based quantitative proteomic approach was used to screen the differentially expressed proteins during control treatment (CK), aluminum (Al) and Al+ indole-3-acetic acid (IAA) treatment of wheat lines ET8 (Al-tolerant). Further, the the expression levels of auxin response factor (ARF), Aux/IAA, Mitogen activated protein kinase (MAPK) 2c, and MAPK1a were analyzed. Results showed that 16 proteins were determined to be differentially expressed in response to Al and IAA co-treatment compared with Al alone. Among them, MAPK2c and MAPK1a proteins displayed markedly differential expression during the processes. The expression of ARF2 was upregulated and Aux/IAA was downregulated by Al, while both in concentration- and time-dependent manners. Western-blot detection of MAPK2c and MAPK1a indicated that Al upregulated MAPK2c and downregulated MAPK1a in both concentration- and time-dependent manners. Exogenous IAA could promote the expression of MAPK2c, but inhibit the expression of MAPK1a in the presence/absence of Al. These findings indicated that IAA acted as one of the key signaling molecule controls the response mechanism of wheat malic acid efflux to Al stress through the suppression/activation of Aux/IAA and ARFs, and the activity of MAPK2c and MAPK1a were positively or negatively regulated.


Subject(s)
Aluminum/toxicity , Indoleacetic Acids/metabolism , Malates/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Proteins/metabolism , Signal Transduction , Stress, Physiological , Triticum/physiology , Arsenicals/pharmacology , Gene Expression Regulation, Plant/drug effects , Isotope Labeling , Plant Roots/drug effects , Plant Roots/physiology , Protein Kinase Inhibitors/pharmacology , RNA, Plant/genetics , RNA, Plant/metabolism , Stress, Physiological/drug effects , Triticum/drug effects , Triticum/genetics
7.
Ying Yong Sheng Tai Xue Bao ; 26(7): 2050-6, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26710631

ABSTRACT

Abstract: The rape (Brassica napus L. cv. Xiangnongyou 571) was chosen as the experimental material to undergo solution cultivation at seedling stage to investigate the effects of selenite addition on the selenium (Se) absorption and distribution, root morphology and physiological characteristics of rape seedlings. The results showed that the bioaccumulation ability of Se decreased significantly with increasing the Se application rate, but the Se distribution coefficient remained around 0.9 with no significant influence. The application of 10 µmol . L-1 selenite stimulated the growth of rape seedlings through improving the root physiological characteristics and root morphology significantly, including significantly increasing the production of superoxide radical (O2∙-) rate and the activities of superoxide dismutase (SOD), peroxidase (POD) and fungal catalase (CAT) in the root system, which resulted in a reduction of the lipids peroxidation (MDA) content as much as 26.0%, consequently increasing the root activity as much as 17.4%. The promoting degrees of selenite on root morphological parameters were from strong to weak in such a tendency: root volume > total surface area > number of root forks > total root length > number of root tips > average diameter. However, such positive effects had no significant difference with those in treatment with 1 µmol . L-1 selenite, indicating that small amounts (≤ 10 Lmol . L-1) of selenite were able to increase the activity of antioxidant enzymes and reduce the content of MDA in root system, which could increase root activity and improve root morphology, hence increased the biomass of rape seedlings.


Subject(s)
Brassica rapa/physiology , Plant Roots/metabolism , Selenious Acid/chemistry , Selenium/metabolism , Biomass , Catalase/metabolism , Lipid Peroxidation , Peroxidase/metabolism , Seedlings/physiology , Soil/chemistry , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...