Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37368647

ABSTRACT

Antrocin is a novel compound isolated from Antrodia cinnamomea, and is classified as a sesquiterpene lactone. The therapeutic efficacy of antrocin has been studied, and it has shown an antiproliferative effect on various cancers. The aim of this study was to evaluate the anti-oxidant activity, potential genotoxicity, and oral toxicity of antrocin. Ames tests with five different strains of Salmonella typhimurium, chromosomal aberration tests in CHO-K1 cells, and micronucleus tests in ICR mice were conducted. The results of anti-oxidant capacity assays showed that antrocin has great anti-oxidant activity and is a moderately strong antimutagenic agent. In the results of the genotoxicity assays, antrocin did not show any mutagenic potential. In the 28-day oral toxicity test, Sprague Dawley rats were gavaged with 7.5 or 37.5 mg/kg of antrocin for 28 consecutive days. In addition, 7.5 mg/kg sorafenib, an anti-cancer drug, was used as a positive control for toxicity comparison. At the end of the study, antrocin did not produce any toxic effects according to hematology, serum chemistry, urine analysis, or histopathological examinations. According to the results of the genotoxicity and 28-day oral toxicity study, antrocin, at a dose of 37.5 mg/kg, did not cause adverse effects and can be a reference dose for therapeutic agents in humans.

2.
Commun Biol ; 6(1): 427, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072500

ABSTRACT

Ectopic ATP synthase complex (eATP synthase), located on cancer cell surface, has been reported to possess catalytic activity that facilitates the generation of ATP in the extracellular environment to establish a suitable microenvironment and to be a potential target for cancer therapy. However, the mechanism of intracellular ATP synthase complex transport remains unclear. Using a combination of spatial proteomics, interaction proteomics, and transcriptomics analyses, we find ATP synthase complex is first assembled in the mitochondria and subsequently delivered to the cell surface along the microtubule via the interplay of dynamin-related protein 1 (DRP1) and kinesin family member 5B (KIF5B). We further demonstrate that the mitochondrial membrane fuses to the plasma membrane in turn to anchor ATP syntheses on the cell surface using super-resolution imaging and real-time fusion assay in live cells. Our results provide a blueprint of eATP synthase trafficking and contribute to the understanding of the dynamics of tumor progression.


Subject(s)
Mitochondria , Neoplasms , Humans , Mitochondria/metabolism , Cell Membrane/metabolism , Mitochondrial Membranes/metabolism , Neoplasms/metabolism , Adenosine Triphosphate/metabolism , Tumor Microenvironment
3.
Vet Pathol ; 58(4): 743-750, 2021 07.
Article in English | MEDLINE | ID: mdl-33866880

ABSTRACT

Canine parvovirus type 2 (CPV-2) is among the most important and highly contagious pathogens that cause enteric or systemic infections in domestic and nondomestic carnivores. However, the spillover of CPV-2 to noncarnivores is rarely mentioned. Taiwanese pangolins (Manis pentadactyla pentadactyla) are threatened due to habitat fragmentation and prevalent animal trafficking. Interactions between Taiwanese pangolins, humans, and domestic animals have become more frequent in recent years. However, information about the susceptibility of pangolins to common infectious agents of domestic animals has been lacking. From October 2017 to June 2019, 4 pangolins that were rescued and treated in wildlife rescue centers in central and northern Taiwan presented with gastrointestinal signs. Gross and histopathological examination revealed the main pathologic changes to be necrotic enteritis with involvement of the crypts in all intestinal segments in 2 pangolins. By immunohistochemistry for CPV-2, there was positive labeling of cryptal epithelium throughout the intestine, and immunolabeling was also present in epidermal cells adjacent to a surgical amputation site, and in mononuclear cells in lymphoid tissue. The other 2 pangolins had mild enteritis without crypt involvement, and no immunolabeling was detected. The nucleic acid sequences of polymerase chain reaction (PCR) amplicons from these 4 pangolins were identical to a Chinese CPV-2c strain from domestic dogs. Quantitative PCR revealed a higher ratio of CPV-2 nucleic acid to internal control gene in the 2 pangolins with severe intestinal lesions and positive immunoreactivity. Herein, we present evidence of CPV-2 infections in pangolins.


Subject(s)
Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Animals , Animals, Wild , Dogs , Leukocyte Count/veterinary , Pangolins , Parvoviridae Infections/veterinary , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...