Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
BMC Cancer ; 24(1): 505, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649856

ABSTRACT

Lung adenocarcinoma is the main type of lung cancer in women. Our previous findings have evidenced that 25-hydroxycholesterol (25-HC) promotes migration and invasion of lung adenocarcinoma cells (LAC), during which LXR as a 25-HC receptor plays an important role. Estrogen receptor beta (ERß) is a receptor of 27-hydroxycholesterol that is structurally analogous to 25-HC, but its role in the functional actions of 25-HC remained largely unknown. In this study, we demonstrated that 25-HC treatment triggered ERß expression in LAC. Knockdown of ERß inhibited 25-HC-mediated proliferation, migration and invasion, and reduced 25-HC-induced LAC metastasis in vivo. Further investigation revealed that ERß knockdown restrained the expression of TNFRSF17 (BCMA). In vivo experiments also confirmed that ERß knockdown blocked 25-HC-induced TNFRSF17 expression. TNFRSF17 knockdown also restrained 25-HC-induced proliferation, migration and invasion. Bioinformatic analysis showed that the levels of ERß and TNFRSF17 were elevated in lung adenocarcinoma, and were closely related to tumor stages and nodal metastasis status. These results suggested that 25-HC promoted the proliferation and metastasis of LAC by regulating ERß/TNFRSF17 axis.


Subject(s)
Adenocarcinoma of Lung , Cell Movement , Cell Proliferation , Estrogen Receptor beta , Hydroxycholesterols , Lung Neoplasms , Animals , Female , Humans , Male , Mice , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/secondary , Cell Line, Tumor , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , Gene Expression Regulation, Neoplastic , Hydroxycholesterols/pharmacology , Hydroxycholesterols/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Signal Transduction
2.
Cancers (Basel) ; 15(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37835538

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy has been applied in the treatment of B-cell lymphoma; however, CAR-T manufacturing requires virus- or non-virus-based genetic modification, which causes high manufacturing costs and potential safety concerns. Antibody-cell conjugation (ACC) technology, which originated from bio-orthogonal click chemistry, provides an efficient approach for arming immune cells with cancer-targeting antibodies without genetic modification. Here, we applied ACC technology in Vγ9Vδ2 T (γδ2 T) cells to generate a novel off-the-shelf CD20-targeting cell therapy ACE1831 (rituximab-conjugated γδ2 T cells) against relapsed/refractory B-cell lymphoma. ACE1831 exhibited superior cytotoxicity against B-cell lymphoma cells and rituximab-resistant cells compared to γδ2 T cells without rituximab conjugation. The in vivo xenograft study demonstrated that ACE1831 treatment strongly suppressed the aggressive proliferation of B-cell lymphoma and prolonged the survival of tumor-bearing mice with no observed toxicity. Mass spectrometry analysis indicated that cell activation receptors including the TCR complex, integrins and cytokine receptors were conjugated with rituximab. Intriguingly, the antigen recognition of the ACC-linked antibody/receptor complex stimulated NFAT activation and contributed to ACE1831-mediated cytotoxicity against CD20-expressing cancer cells. This study elucidates the role of the ACC-linked antibody/receptor complex in cytotoxicity and supports the potential of ACE1831 as an off-the-shelf γδ2 cell therapy against relapsed/refractory B-cell lymphoma.

3.
PeerJ ; 11: e15041, 2023.
Article in English | MEDLINE | ID: mdl-36890868

ABSTRACT

Background: The elevating osteoclast differentiation can lead to an imbalance in bone homeostasis, which was responsible for bone loss and bone diseases, such as osteoporosis. Multiple pathways and molecules have been involved in osteoclast formation, but the role of CYP27A1 in osteoclast differentiation has never been explored. Methods: CYP27A1 deficient mice were constructed using CRISPR-Cas9 system. Osteoclast differentiation was detected by TRAP staining. Differentially expressed genes (DEGs) were identified using RNA-seq analysis and were confirmed by qRT-PCR and Western blot. Results: The results showed that CYP27A1 knockout (KO) promoted osteoclast differentiation and bone loss. The transcriptomic analysis revealed that CYP27A1 KO led to differential expression of multiple genes, including ELANE, LY6C2, S100A9, GM20708, BGN, SPARC, and COL1A2, which were confirmed by qRT-PCR and Western blot. Enrichment analysis indicated that these differential genes were significantly associated with osteogenesis-related pathways, such as PPAR signaling, IL-17 signaling, and PI3K/AKT signaling, which were confirmed by qRT-PCR and Western blot. Conclusions: These results suggested that CYP27A1 was involved in osteoclast differentiation, providing a novel therapeutic target for osteoclast-related diseases.


Subject(s)
Osteoclasts , Phosphatidylinositol 3-Kinases , Mice , Animals , Osteoclasts/metabolism , Phosphatidylinositol 3-Kinases/genetics , Osteogenesis/genetics , Collagen Type I/metabolism , Cholestanetriol 26-Monooxygenase/metabolism
4.
Cell Death Dis ; 14(2): 145, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36804539

ABSTRACT

The mutations of HOXD13 gene have been involved in synpolydactyly (SPD), and the polyalanine extension mutation of Hoxd13 gene could lead to SPD in mice. In this study, a novel missense mutation of Hoxd13 (NM_000523: exon2: c.G917T: p.R306L) was identified in a Chinese family with SPD. The mice carrying the corresponding Hoxd13mutation were generated. The results showed that the homozygous mutation of Hoxd13 also caused SPD, but heterozygous mutation did not affect limbs development, which was different from that of SPD patients. With the increasing generation, the mice with homozygous Hoxd13 mutation presented more severe syndactyly. Western blotting showed that this mutation did not affect the protein expression of Hoxd13, suggesting that this mutation did not result in haploinsufficiency. Further analysis demonstrated that this homozygous Hoxd13mutation promoted osteoclast differentiation and bone loss, and enhanced the mRNA and protein expression of osteoclast-related genes Rank, c-Fos, and p65. Meanwhile, this homozygous Hoxd13 mutation elevated the level of phosphorylated Smad5 (pSmad5). Co-immunoprecipitation verified that this mutation attenuated the interaction between pSmad5 and HOXD13, suggesting that this mutation released more pSmad5. Inhibition of pSmad5 reduced the expression of Rank, c-Fos, and p65 despite in the mutation group. In addition, inhibition of pSmad5 repressed the osteoclast differentiation. ChIP assay confirmed that p65 and c-Fos could bind to the promoter of Rank. These results suggested that this novel Hoxd13 mutation promoted osteoclast differentiation by regulating Smad5/p65/c-Fos/Rank axis, which might provide a new insight into SPD development.


Subject(s)
Homeodomain Proteins , Syndactyly , Animals , Mice , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mutation/genetics , Osteoclasts/metabolism , Pedigree , Syndactyly/genetics , Syndactyly/metabolism , Transcription Factors/metabolism
6.
Oncogene ; 41(19): 2685-2695, 2022 05.
Article in English | MEDLINE | ID: mdl-35379924

ABSTRACT

Dietary cholesterol has been implicated to promote lung cancer. Lung adenocarcinoma (LAC) is a main type of lung cancer, whereas the functional mechanism of cholesterol in LAC remained largely unknown. In the present study, we evidenced that cholesterol promoted cell proliferation and invasion of LAC in vitro as well as LAC metastasis in vivo. Cyp27A1 knockdown reduced the cholesterol-induced LAC cells proliferation and invasion. In contrast, Cyp7B1 knockdown enhanced the effect of cholesterol on LAC cells proliferation and invasion. Furthermore, Cyp27A1 deficiency remarkably reduced high cholesterol-induced LAC metastasis in vivo. Mechanism investigation demonstrated that exposure of LAC cells to 27-hydroxycholesterol induced the phosphorylation of AKT and NFκB p65, and promoted the expression of peptidylprolyl isomerase B (PPIB), especially in the coculture with THP1-derived macrophage. Meanwhile, 27-hydroxycholesterol induced the secretion of FGF2 and IL-6, which contributed to the expression of snail and vimentin. Luciferase report assay and ChIP assay confirmed that NFκB p65 controlled the transcription of PPIB. Inhibiting NFκB p65 activation reduced PPIB expression. PPIB inhibition reduced 27-hydroxycholesterol-induced expression of snail and vimentin. These results indicated that 27-hydroxycholesterol linked high cholesterol and LAC metastasis by regulating NFκB/PPIB axis and the secretion of FGF2 and IL-6.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/pathology , Cell Line, Tumor , Cell Proliferation , Diet , Fibroblast Growth Factor 2 , Humans , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Interleukin-6 , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Vimentin
7.
Cancers (Basel) ; 13(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072864

ABSTRACT

Natural killer (NK) cells harbor efficient cytotoxicity against tumor cells without causing life-threatening cytokine release syndrome (CRS) or graft-versus-host disease (GvHD). When compared to chimeric antigen receptor (CAR) technology, Antibody-Cell Conjugation (ACC) technology has been developed to provide an efficient platform to arm immune cells with cancer-targeting antibodies to recognize and attack cancer cells. Recently, we established an endogenous CD16-expressing oNK cell line (oNK) with a favorable expression pattern of NK activation/inhibitory receptors. In this study, we applied ACC platform to conjugate oNK with trastuzumab and an anti-human epidermal growth factor receptor 2 (HER2) antibody. Trastuzumab-conjugated oNK, ACE-oNK-HER2, executed in vitro and in vivo cytotoxicity against HER2-expressing cancer cells and showed enhanced T cell-recruiting capability and secretion of IFNγ. The irradiated and cryopreserved ACE-oNK-HER2, designated as ACE1702, retained superior HER2-specific in vitro and in vivo potency with no tumorigenic potential. In conclusion, this study provides the evidence to support the potential clinical application of ACE1702 as a novel off-the-shelf NK cell therapy against HER2-expressing solid tumors.

9.
Biochem Biophys Rep ; 26: 100935, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33644421

ABSTRACT

Natural killer (NK) cells, as a potential source for off-the-shelf cell therapy, attack tumor cells with low risk of severe cytokine release syndrome (CRS) or graft-versus-host disease (GvHD). Fcγ receptor IIIA, also known as CD16, further confers NK cells with antibody-dependent cell-mediated cytotoxicity (ADCC), one mechanism of action of antibody-based immunotherapy. Here, we establish a novel human NK cell line, oNK-1, endogenously expressing CD16 along with high levels of NK activation markers and low levels of NK inhibitory markers. The long-term expansion and CD16 expression of oNK-1 cells were demonstrated. Furthermore, oNK-1 cells elicit superior cytotoxicity against cancer cells than primary NK cells. In conclusion, this study suggests that endogenous CD16-expressing oNK-1 has the potential to develop an effective NK-based therapy.

10.
Int J Oncol ; 58(2): 278-279, 2021 02.
Article in English | MEDLINE | ID: mdl-33491746

ABSTRACT

Subsequently to the publication of the above article, an interested reader drew to the attention of the Editorial Office that, in Fig. 1C on p. 1242, the flow cytometric images contained what appeared to be regular and repeating groups of cells. The office consequently asked the authors to provide the raw data for these images, as they would have been generated from the printouts, and the authors were able to demonstrate that these apparent anomalies were not contained in the original data. It is possible that the anomalous appearance of the data in this Figure may have resulted either from low resolution of the images, or the Figure itself may have been compressed. We are reprinting Fig. 1C opposite, highlighting the data of interest in greater detail. We trust that this satisfies the concerns of the reader in this instance, and thank them for their enquiry to the Editorial Office. The authors also requested that, after having provided the raw data of the original image in order to clarify the concerns of the reader, they may republish Fig. 1 featuring alternative data for Fig. 1C. The revised version of Fig. 1 is consequently shown on the next page. In this figure, flow cytometric analysis demonstrated that treatment with 10 µM gemcitabine induced the death of 66.5% of the BxPC­3 cells, 29.54% of the Panc­1 cells, and 34.52% of the MIApaca­2 cells (Fig. 1C). The authors confirm that these data support the main conclusions presented in their paper, and are grateful to the Editor of International Journal of Oncology for allowing them this opportunity to publish a Corrigendum. They also apologise to the readership for any inconvenience caused. [the original article was published in International Journal of Oncology 51: 1239­1248, 2017; DOI: 10.3892/ijo.2017.4099].

11.
Front Chem ; 9: 764200, 2021.
Article in English | MEDLINE | ID: mdl-35047478

ABSTRACT

A promising approach in cancer therapy is the inhibition of cell proliferation using small molecules. In this study, we report the synthesis of suramin derivatives and their applications. We used NMR spectroscopy and docking simulations to confirm binding sites and three-dimensional models of the ligand-protein complex. The WST-1 assay was used to assess cell viability and cell proliferation in vitro to evaluate the inhibition of protein-protein interactions and to investigate the anti-proliferative activities in a breast cancer cell line. All the suramin derivatives showed anti-proliferative activity by blocking FGF1 binding to its receptor FGFRD2. The dissociation constant was measured by fluorescence spectroscopy. The suramin compound derivatives synthesized herein show potential as novel therapeutic agents for their anti-proliferative activity via the inhibition of protein-protein interactions. The cytotoxicity of these suramin derivatives was lower than that of the parent suramin compound, which may be considered a significant advancement in this field. Thus, these novel suramin derivatives may be considered superior anti-metastasis molecules than those of suramin.

14.
Eur J Med Chem ; 206: 112656, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32827875

ABSTRACT

The inhibition of protein function by small compounds plays a critical role in controlling cell proliferation. We report on a new class of small molecule (NCTU-Alan-2026) inhibitors for cell proliferation. NCTU-Alan-2026 blocks the interaction between FGF1 and its receptor FGF1R2D2. Extensive NMR studies combined with fluorescence experiments provided the specific mechanism of how NCTU-Alan-2026 could inhibit cell proliferation. We describe an innovative therapeutic approach for anti-proliferation and demonstrate an example of inhibition of small molecules by blocking the protein-protein interaction. We found that the compound NCTU-Alan-2026 blocked the interaction between the two proteins FGF1 and FGF1R2D2 and inhibited cell proliferation. The toxicity of NCTU-Alan-2026 is lower than that of suramin. Thus, NCTU-Alan-2026 could be a better drug than suramin in the treatment of cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Fibroblast Growth Factor 1/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Suramin/chemistry , Suramin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Protein Binding/drug effects
15.
Mol Genet Genomic Med ; 8(6): e1223, 2020 06.
Article in English | MEDLINE | ID: mdl-32253825

ABSTRACT

BACKGROUND: Polysyndactyly (PSD) is an autosomal dominant genetic limb malformation caused by mutations. METHODS: Whole exome sequencing and Sanger sequencing were used to determine the mutations in PSD patients. Luciferase reporter assay was performed to determine the effect of GLI3 mutation on its transcriptional activity. RESULTS: In this study, we investigated the gene mutations of three affected individuals across three generations. The frameshift mutations of GLI3 (NM_000168:c.4659del, NP_000159.3: p.Ser1553del), ANKUB1 (NM_001144960:c.1385del, NP_001138432.1: p.Pro462del), and TAS2R3 (NM_016943:c.128_131del, NP_058639.1: p.Leu43del) were identified in the three affected individuals, but not in three unaffected members by whole exome sequencing and sanger sequencing. Luciferase reporter assay demonstrated that GLI3 mutation reduced the transcriptional activity of GLI3. The results from SMART analysis showed that the frameshift mutation of TAS2R3 altered most protein sequence, which probably destroyed protein function. Although the frameshift mutation of ANKUB1 did not locate in ankyrin repeat domain and ubiquitin domain, it might influence the interaction between ANKUB1 and other proteins, and further affected the ubiquitinylation. CONCLUSION: These results indicated that the frameshift mutations of GLI3, ANKUB1, and TAS2R3 might alter the functions of these proteins, and accelerated PSD progression.


Subject(s)
Frameshift Mutation , Nerve Tissue Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Syndactyly/genetics , Zinc Finger Protein Gli3/genetics , Adult , Female , HEK293 Cells , Humans , Infant , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Pedigree , Receptors, G-Protein-Coupled/metabolism , Syndactyly/pathology , Zinc Finger Protein Gli3/metabolism
16.
Biochem Biophys Res Commun ; 513(1): 154-158, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30952428

ABSTRACT

High glucose-induced cardiac myocytes apoptosis has been well demonstrated, but the mechanism remains unknown. In this study, we found that exposure of cardiac H9c2 cells to high glucose promoted Foxo1 and GRK2 expression, and induced autophagy. Further investigation showed that high glucose simultaneously increased the expression of cytoplasmic and nuclear Foxo1. Inhibition of Foxo1 reduced GRK2 expression and blocked autophagy, enhancing high glucose-induced apoptosis. GRK2 knockdown did not significantly affect Foxo1 expression and autophagy, but attenuated high glucose-induced apoptosis. Intriguingly, GRK2 knockdown reduced ROS generation. NAC treatment not only reduced the levels of cytoplasmic and nuclear Foxo1, but also inhibited GRK2 expression and autophagy, remarkably reducing high glucose-induced apoptosis. Inhibition of autophagy did not notably affect the expression of Foxo1 and GRK2, but enlarged high glucose-induced apoptosis. ChIP assay and Luciferase reporter assay confirmed that Foxo1 positively regulated GRK2 transcription. These results suggested that Foxo1 was involved in glucose-induced apoptosis by regulating GRK2 expression and autophagy.


Subject(s)
Apoptosis , Forkhead Box Protein O1/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Glucose/metabolism , Myocytes, Cardiac/metabolism , Animals , Autophagy , Cell Line , Hyperglycemia/metabolism , Myocytes, Cardiac/cytology , Rats , Signal Transduction
17.
Cell Res ; 29(2): 151-166, 2019 02.
Article in English | MEDLINE | ID: mdl-30559440

ABSTRACT

Menopause is associated with dyslipidemia and an increased risk of cardio-cerebrovascular disease. The classic view assumes that the underlying mechanism of dyslipidemia is attributed to an insufficiency of estrogen. In addition to a decrease in estrogen, circulating follicle-stimulating hormone (FSH) levels become elevated at menopause. In this study, we find that blocking FSH reduces serum cholesterol via inhibiting hepatic cholesterol biosynthesis. First, epidemiological results show that the serum FSH levels are positively correlated with the serum total cholesterol levels, even after adjustment by considering the effects of serum estrogen. In addition, the prevalence of hypercholesterolemia is significantly higher in peri-menopausal women than that in pre-menopausal women. Furthermore, we generated a mouse model of FSH elevation by intraperitoneally injecting exogenous FSH into ovariectomized (OVX) mice, in which a normal level of estrogen (E2) was maintained by exogenous supplementation. Consistently, the results indicate that FSH, independent of estrogen, increases the serum cholesterol level in this mouse model. Moreover, blocking FSH signaling by anti-FSHß antibody or ablating the FSH receptor (FSHR) gene could effectively prevent hypercholesterolemia induced by FSH injection or high-cholesterol diet feeding. Mechanistically, FSH, via binding to hepatic FSHRs, activates the Gi2α/ß-arrestin-2/Akt pathway and subsequently inhibits the binding of FoxO1 with the SREBP-2 promoter, thus preventing FoxO1 from repressing SREBP-2 gene transcription. This effect, in turn, results in the upregulation of SREBP-2, which drives HMGCR nascent transcription and de novo cholesterol biosynthesis, leading to the increase of cholesterol accumulation. This study uncovers that blocking FSH signaling might be a new strategy for treating hypercholesterolemia during menopause, particularly for women in peri-menopause characterized by FSH elevation only.


Subject(s)
Cholesterol/biosynthesis , Follicle Stimulating Hormone, Human/antagonists & inhibitors , Follicle Stimulating Hormone, Human/blood , Hypercholesterolemia/epidemiology , Liver/metabolism , Menopause/metabolism , Adult , Animals , Antibodies/pharmacology , Anticholesteremic Agents/pharmacology , Cross-Sectional Studies , Disease Models, Animal , Estrogens/metabolism , Female , Hep G2 Cells , Humans , Hypercholesterolemia/chemically induced , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Prevalence , RNA, Small Interfering/genetics , Receptors, FSH/genetics , Receptors, FSH/metabolism
18.
J Cell Physiol ; 234(8): 12692-12700, 2019 08.
Article in English | MEDLINE | ID: mdl-30511368

ABSTRACT

27-Hydroxycholesterol (27-HC) has been implicated in the pathological process of estrogen receptor positive breast cancer. However, the role of 27-HC in lung adenocarcinoma is still unclear. Because bone metastasis is a main reason for the high mortality of lung adenocarcinoma, this study aimed to investigate the effect of 27-HC on osteoclastogenesis in lung adenocarcinoma microenvironment. The results showed that the conditioned media (CM) from lung adenocarcinoma cells cocultured with macrophages promoted osteoclast differentiation, which was enhanced by 27-HC. Further investigation showed that CM inhibited miR-139 expression and promoted c-Fos expression. Luciferase reporter assay identified c-Fos as a direct target of miR-139. CM also induced the expression and nuclear translocation of NFATc1 and STAT3 phosphorylation, which was enlarged by 27-HC but was attenuated by miR-139. Coimmunoprecipitation assay demonstrated that 27-HC increased the interaction between NFATc1 and phosphorylated STAT3, which was restricted by miR-139. Chromatin immunoprecipitation assay showed that pSTAT3 could bind to the promoter of c-Fos, c-Fos could bind to the promoter of NFATc1, and both pSTAT3 and NFATc1 could bind to the promoter of Oscar, which were enlarged by 27-HC but were blocked by miR-139. Knockdown of c-Fos mimicked the effect of miR-139. These results suggested that CM, especially containing 27-HC, promoted osteoclastogenesis by inhibiting miR-139 expression and activating the STAT3/c-Fos/NFATc1 pathway.


Subject(s)
Adenocarcinoma of Lung/genetics , Hydroxycholesterols/metabolism , Lung Neoplasms/genetics , Osteoclasts/pathology , Osteogenesis/genetics , Tumor Microenvironment/genetics , A549 Cells , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Cell Differentiation/genetics , Cell Line , Cell Line, Tumor , Chromatin Immunoprecipitation/methods , HEK293 Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrophages/pathology , Mice , MicroRNAs/genetics , Promoter Regions, Genetic/genetics , RAW 264.7 Cells , Signal Transduction/genetics
19.
J Nat Prod ; 81(5): 1162-1172, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29746128

ABSTRACT

Terpenoids are a large group of important secondary metabolites that are involved in a variety of physiological mechanisms, and many are used commercially in the cosmetics and pharmaceutical industries. During the past decade, the topic of seasonal variation in terpenoid biosynthesis has garnered increasing attention. Formosan sweet gum ( Liquidambar formosana Hance) is a deciduous tree species. The expression of terpene synthase and accumulation of terpenoids in leaves may vary in different seasons. Here, four sesquiterpene synthases (i.e., LfTPS01, LfTPS02, LfTPS03, and LfTPS04) and a bifunctional mono/sesquiterpene synthase ( LfTPS05) were identified from Formosan sweet gum. The gene expression of LfTPS01, LfTPS02, and LfTPS03 showed seasonal diversification, and, in addition, expression of LfTPS04 and LfTPS05 was induced by methyl jasmonate treatment. The major products LfTPS01, LfTPS02, LfTPS04, and LfTPS05 are hedycaryol, α-selinene, trans-ß-caryophyllene, α-copaene/δ-cadinene, and nerolidol/linalool, respectively. The data indicated that the sesquiterpenoid content in the essential oil of Formosan sweet gum leaves shows seasonal differences that were correlated to the sesquiterpene synthase gene expression.


Subject(s)
Alkyl and Aryl Transferases/genetics , Gene Expression/genetics , Liquidambar/genetics , Plant Proteins/genetics , Sesquiterpenes/metabolism , Acyclic Monoterpenes , Monoterpenes/metabolism , Plant Leaves/genetics , Polycyclic Sesquiterpenes , Seasons
20.
J Cell Physiol ; 233(10): 6683-6692, 2018 10.
Article in English | MEDLINE | ID: mdl-29323707

ABSTRACT

Oxidative low-density lipoprotein (ox-LDL) is a risk factor for atherosclerosis. Ox-LDL leads to endothelial injury in the initial stage of atherosclerosis. In this study, we investigated the role of ox-LDL in endothelial injury and macrophage recruitment. We demonstrated that ox-LDL promoted a dose-dependent phosphorylation of caveolin-1 in human umbilical vein endothelial cells. Phosphorylated caveolin-1 increased ox-LDL uptake. Intracellular accumulation of ox-LDL induced NF-κB p65 phosphorylation, promoted HMGB1 translocation from nucleus to cytoplasm and cytochrome C release from mitochondria to cytoplasm, and activated caspase 3, resulting in cell apoptosis. NF-κB activation also facilitated cavolin-1 phosphorylation and HMGB1 expression. In addition, caveolin-1 phosphorylation favored HMGB1 release and nuclear translocation of EGR1. Nuclear translocation of EGR1 contributed to cytoplasmic translocation of HMGB1. The extracellular HMGB1 induced the migration of PMBC-derived macrophages toward HUVECs in a TLR4-dependent manner. Our results suggested that ox-LDL promoted HUVECs apoptosis and macrophage recruitment by regulating caveolin-1 phosphorylation.


Subject(s)
Apoptosis/genetics , Caveolin 1/genetics , HMGB1 Protein/genetics , Toll-Like Receptor 4/genetics , Cell Movement/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Early Growth Response Protein 1/genetics , Endothelial Cells/metabolism , Gene Expression Regulation/genetics , Human Umbilical Vein Endothelial Cells , Humans , Lipoproteins, LDL/genetics , Macrophages/metabolism , Phosphorylation , Protein Transport/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...