Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.987
Filter
1.
J Formos Med Assoc ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729819

ABSTRACT

BACKGROUND AND PURPOSE: Patients with hypervascular spinal tumors may have severe blood loss during tumor resection, which increases the risks of perioperative morbidity and mortality. However, the preoperative evaluation of tumor vascularity may be challenging; moreover, the reliability of the data obtained in conventional preoperative noninvasive imaging is debatable. In this study, we compared conventional magnetic resonance imaging (MRI) and subtraction computed tomography angiography (CTA) in terms of their performance in vascularity evaluation. The catheter digital subtraction angiography (DSA) technique was used as a reference standard. METHODS: This study included 123 consecutive patients with spinal tumor who underwent subtraction CTA, catheter DSA, and subsequent surgery between October 2015 and October 2021. Data regarding qualitative and semiquantitative subtraction CTA parameters and conventional MRI signs were collected for comparison with tumor vascularity graded through catheter DSA. The diagnostic performance of qualitative CTA, quantitative CTA, and conventional MRI in assessing spinal tumor vascularity was analyzed. RESULTS: Qualitative subtraction CTA was the best noninvasive imaging modality in terms of diagnostic performance (area under the receiver operating characteristic curve [AUROC], 0.95). Quantitative CTA was relatively inferior (AUROC, 0.87). MRI results had low reliability (AUROC, 0.51 to 0.59). Intratumoral hemorrhage and prominent foraminal venous plexus were found to be the specific signs for hypervascularity (specificity 93.2%). CONCLUSIONS: Qualitative subtraction CTA offers the highest diagnostic value in evaluating spinal tumor vascularity, compared to quantitative CTA and MRI. Although conventional MRI may not be a reliable approach, certain MRI signs may have high specificity, which may be crucial for assessing spinal tumor vascularity.

2.
Int J Med Sci ; 21(6): 1117-1128, 2024.
Article in English | MEDLINE | ID: mdl-38774761

ABSTRACT

In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.5 on human alveolar basal epithelial cells, A549 cells, and uncovered several significant findings were investigated. The results showed that PM2.5 exposure did not lead to a notable decrease in cell viability, indicating that PM2.5 did not cause cellular injury or death. However, the study found that PM2.5 exposure increased the invasion and migration abilities of A549 cells, suggesting that PM2.5 might promote cell invasiveness. Results of RNA sequencing revealed 423 genes that displayed significant differential expression in response to PM2.5 exposure, with a particular focus on pathways associated with the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Real-time detection demonstrated an increase in ROS production in A549 cells after exposure to PM2.5. JC1 assay, which indicated a loss of mitochondrial membrane potential (ΔΨm) in A549 cells exposed to PM2.5. The disruption of mitochondrial membrane potential further supports the detrimental effects of PM2.5 on A549 cells. These findings highlight several adverse effects of PM2.5 on A549 cells, including enhanced invasion and migration capabilities, altered gene expression related to ROS pathways, increased ROS production and disruption of mitochondrial membrane potential. These findings contribute to our understanding of the potential mechanisms through which PM2.5 can impact cellular function and health.


Subject(s)
Cell Movement , Cell Survival , Lung Neoplasms , Membrane Potential, Mitochondrial , Particulate Matter , Reactive Oxygen Species , Humans , Particulate Matter/adverse effects , Reactive Oxygen Species/metabolism , A549 Cells , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Cell Movement/drug effects , Membrane Potential, Mitochondrial/drug effects , Cell Survival/drug effects , Lab-On-A-Chip Devices , Mitochondria/metabolism , Mitochondria/drug effects , Neoplasm Invasiveness/genetics , Gene Expression Regulation, Neoplastic/drug effects , Microfluidics/methods
3.
Artif Intell Med ; 153: 102888, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38781870

ABSTRACT

BACKGROUND: When treating patients with coronary artery disease and concurrent renal concerns, we often encounter a conundrum: how to achieve a clearer view of vascular details while minimizing the contrast and radiation doses during percutaneous coronary intervention (PCI). Our goal is to use deep learning (DL) to create a real-time roadmap for guiding PCI. To this end, segmentation, a critical first step, paves the way for detailed vascular analysis. Unlike traditional supervised learning, which demands extensive labeling time and manpower, our strategy leans toward semi-supervised learning. This method not only economizes on labeling efforts but also aims at reducing contrast and radiation exposure. METHODS AND RESULTS: CAG data sourced from eight tertiary centers in Taiwan, comprising 500 labeled and 8952 unlabeled images. Employing 400 labels for training and reserving 100 for validation, we built a U-Net based network within a teacher-student architecture. The initial teacher model was updated with 8952 unlabeled images inputted, employing a quality control strategy involving consistency regularization and RandAugment. The optimized teacher model produced pseudo-labels for label expansion, which were then utilized to train the final student model. We attained an average dice similarity coefficient of 0.9003 for segmentation, outperforming supervised learning methods with the same label count. Even with only 5 % labels for semi-supervised training, the results surpassed a supervised method with 100 % labels inputted. This semi-supervised approach's advantage extends beyond single-frame prediction, yielding consistently superior results in continuous angiography films. CONCLUSIONS: High labeling cost hinders DL training. Semi-supervised learning, quality control, and pseudo-label expansion can overcome this. DL-assisted segmentation potentially provides a real-time PCI roadmap and further diminishes radiation and contrast doses.

4.
Med Sci Sports Exerc ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689440

ABSTRACT

PURPOSE: Despite its susceptibility to muscle fatigue, combined neuromuscular electrical stimulation (NMES) and blood flow restriction (BFR) is an effective regimen for managing muscle atrophy when traditional resistance exercises are not feasible. This study investigated the potential of low-level laser therapy (LLLT) in reducing muscle fatigue after the application of combined NMES and BFR. METHODS: Thirty-six healthy adults were divided into control and LLLT groups. The LLLT group received 60 J of 850 nm wavelength LLLT before a training program of combined NMES and BFR of the non-dominant extensor carpi radialis longus (ECRL). The control group followed the same protocol but received sham laser therapy. Assessments included maximal voluntary contraction (MVC), ECRL mechanical properties, and isometric force-tracking for wrist extension. RESULTS: The LLLT group exhibited a smaller normalized difference in MVC decrement (-4.01 ± 4.88%) than the control group (-23.85 ± 7.12%) (P < .001). The LLLT group demonstrated a smaller decrease in muscle stiffness of the ECRL compared to the control group, characterized by the smaller normalized changes in frequency (P = .002), stiffness (P = .002), and relaxation measures (P = .011) of mechanical oscillation waves. Unlike the control group, the LLLT group exhibited a smaller post-test increase in force fluctuations during force-tracking (P = .014), linked to the predominant recruitment of low-threshold MUs (P < .001) without fatigue-related increases in the discharge variability of high-threshold MUs (P > .05). CONCLUSIONS: LLLT pre-exposure reduces fatigue after combined NMES and BFR, preserving force generation, muscle stiffness, and force scaling. The functional benefits are achieved through fatigue-resistant activation strategies of motor unit recruitment and rate coding.

5.
Science ; 384(6697): 767-775, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753792

ABSTRACT

The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino-silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane-treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.

6.
Biosens Bioelectron ; 258: 116318, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38701538

ABSTRACT

We report a massive field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13 mm2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction force into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave.


Subject(s)
Myocytes, Cardiac , Animals , Rats , Myocytes, Cardiac/cytology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Equipment Design , Video Recording , Cells, Cultured
7.
Int J Periodontics Restorative Dent ; 44(3): 1-9, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787709

ABSTRACT

Successful bone augmentation relies on primary wound closure. The labial frenum is a soft tissue that connects the lip to the alveolar mucosa or gingiva. However, the frenum may exert biomechanical forces to the wound edge, causing wound instability. The aim of this study is to review the frenum composition and classifications and to understand the significance of the frenum in wound stability upon bone regeneration. Together with a manual search, an electronic search was conducted through three online databases on studies published until September 2022. A total of 300 articles were identified, and 9 studies were included in this review. Two of the included studies discovered that 35% to 37.5% of the labial frenum had muscle fibers. Other studies showed that the labial frenum was mainly composed of connective tissue with elastic fibers. There are two widely used classifications for the frenum based on its morphology and attachment position. No studies specifically evaluated the impact of the frenum on bone regeneration, but the frenum location intercorrelated with the amount of keratinized tissue, which could influence wound stability. A modified frenum classification for the edentulous ridge and a decision diagram to manage the frenum is proposed for research and evidence-based practice.


Subject(s)
Bone Regeneration , Labial Frenum , Humans , Bone Regeneration/physiology , Alveolar Ridge Augmentation/methods , Gingiva
8.
Article in English | MEDLINE | ID: mdl-38698748

ABSTRACT

AIMS: This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. BACKGROUND: Previously, IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. OBJECTIVE: Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. METHOD: To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. RESULTS: IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. CONCLUSION: IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.

9.
Article in English | MEDLINE | ID: mdl-38780270

ABSTRACT

Spinal cord injury is associated with spinal vascular disruptions that result in spinal ischemia and tissue hypoxia. This study evaluated the therapeutic efficacy of normobaric hyperoxia on spinal cord oxygenation and circulatory function at the acute stage of cervical spinal cord injury. Adult male Sprague Dawley rats underwent dorsal cervical laminectomy or cervical spinal cord contusion. At 1-2 days after spinal surgery, spinal cord oxygenation was monitored in anesthetized and spontaneously breathing rats through optical recording of oxygen sensor foils placed on the cervical spinal cord and pulse oximetry. The arterial blood pressure, heart rate, blood gases, and peripheral oxyhemoglobin saturation were also measured under hyperoxic (50% O2) and normoxic (21% O2) conditions. The results showed that contused animals had significantly lower spinal cord oxygenation levels than uninjured animals during normoxia. Peripheral oxyhemoglobin saturation, arterial oxygen partial pressure, and mean arterial blood pressure are significantly reduced following cervical spinal cord contusion. Notably, spinal oxygenation of contused rats could be improved to a level comparable to uninjured animals under hyperoxia. Furthermore, acute hyperoxia elevated blood pressure, arterial oxygen partial pressure, and peripheral oxyhemoglobin saturation. These results suggest that normobaric hyperoxia can significantly improve spinal cord oxygenation and circulatory function in the acute phase after cervical spinal cord injury. We propose that adjuvant normobaric hyperoxia combined with other hemodynamic optimization strategies may prevent secondary damage after spinal cord injury and improve functional recovery.


Subject(s)
Hyperoxia , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/metabolism , Male , Hyperoxia/physiopathology , Hyperoxia/blood , Rats , Oxygen/blood , Oxygen/metabolism , Spinal Cord/metabolism , Spinal Cord/blood supply , Spinal Cord/physiopathology , Cervical Cord/injuries , Cervical Cord/metabolism , Blood Pressure/physiology , Oxyhemoglobins/metabolism , Heart Rate/physiology
10.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746377

ABSTRACT

Background and Objective: Prostate cancer (PCa) is a leading cause of cancer mortality in men, with neuroendocrine prostate cancer (NEPC) representing a particularly resistant subtype. The role of transcription factors (TFs) in the progression from prostatic adenocarcinoma (PRAD) to NEPC is poorly understood. This study aims to identify and analyze lineage-specific TF profiles in PRAD and NEPC and illustrate their dynamic shifts during NE transdifferentiation. Methods: A novel algorithmic approach was developed to evaluate the weighted expression of TFs within patient samples, enabling a nuanced understanding of TF landscapes in PCa progression and TF dynamic shifts during NE transdifferentiation. Results: unveiled TF profiles for PRAD and NEPC, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs. Enrichment analysis across multiple clinical cohorts confirmed the lineage specificity and clinical relevance of these lineage-TFs signatures. Functional analysis revealed that lineage-TFs are implicated in pathways critical to cell development, differentiation, and lineage determination. Novel lineage-TF candidates were identified, offering potential targets for therapeutic intervention. Furthermore, our longitudinal study on NE transdifferentiation highlighted dynamic TF expression shifts and delineated a three-phase hypothesis for the process comprised of de-differentiation, dormancy, and re-differentiation. and proposing novel insights into the mechanisms of PCa progression. Conclusion: The lineage-specific TF profiles in PRAD and NEPC reveal a dynamic shift in the TF landscape during PCa progression, highlighting three distinct phases of NE transdifferentiation.

11.
Sci Rep ; 14(1): 8664, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622234

ABSTRACT

This study examined the relationship between radon (222Rn) concentrations in seawater and crustal activity in the Yatsushiro Sea by investigating the submarine fault zone situated at the southern end of the Futagawa-Hinagu fault zone, activated by the 2016 Kumamoto earthquake (M7.3). We conducted an analysis of 222Rn concentration in samples of bottom water just above the seafloor and pore water in sediments, utilizing multiple and piston cores from the Hakuho Maru Expedition KH18-3. The findings revealed significantly elevated 222Rn concentrations in the central sites of the Yatsushiro Sea, coinciding with a high-stress field exhibiting dense active faults. Seismicity analysis revealed heightened moment release and a low b-value post the 2016 Kumamoto earthquake, indicative of increased seismic activity and the potential for substantial earthquakes in the Yatsushiro Sea vicinity. Our results indicate that heightened concentrations of 222Rn in seawater can serve as an effective tracer for identifying and estimating submarine fault activities. Moreover, our research highlights the utility of 222Rn concentrations in detecting active submarine faults and assessing their activity. It contributes to a comprehensive understanding of the potential for significant earthquakes in the Yatsushiro Sea in the future.

12.
Kaohsiung J Med Sci ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682650

ABSTRACT

Pulmonary vascular remodeling is a key pathological process of pulmonary arterial hypertension (PAH), characterized by uncontrolled proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Bortezomib (BTZ) is the first Food and Drug Administration (FDA)-approved proteasome inhibitor for multiple myeloma treatment. Recently, there is emerging evidence showing its effect on reversing PAH, although its mechanisms are not well understood. In this study, anti-proliferative and anti-migratory effects of BTZ on PASMCs were first examined by different inducers such as fetal bovine serum (FBS), angiotensin II (Ang II) and platelet-derived growth factor (PDGF)-BB, while potential mechanisms including cellular reactive oxygen species (ROS) and mitochondrial ROS were then investigated; finally, signal transduction of ERK and Akt was examined. Our results showed that BTZ attenuated FBS-, Ang II- and PDGF-BB-induced proliferation and migration, with associated decreased cellular ROS production and mitochondrial ROS production. In addition, the phosphorylation of ERK and Akt induced by Ang II and PDGF-BB was also inhibited by BTZ treatment. This study indicates that BTZ can prevent proliferation and migration of PASMCs, which are possibly mediated by decreased ROS production and down-regulation of ERK and Akt. Thus, proteasome inhibition can be a novel pharmacological target in the management of PAH.

13.
J Chem Inf Model ; 64(9): 3610-3620, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38668753

ABSTRACT

The fast and accurate conformation space modeling is an essential part of computational approaches for solving ligand and structure-based drug discovery problems. Recent state-of-the-art diffusion models for molecular conformation generation show promising distribution coverage and physical plausibility metrics but suffer from a slow sampling procedure. We propose a novel adversarial generative framework, COSMIC, that shows comparable generative performance but provides a time-efficient sampling and training procedure. Given a molecular graph and random noise, the generator produces a conformation in two stages. First, it constructs a conformation in a rotation and translation invariant representation─internal coordinates. In the second step, the model predicts the distances between neighboring atoms and performs a few fast optimization steps to refine the initial conformation. The proposed model considers conformation energy, achieving comparable space coverage, and diversity metrics results.


Subject(s)
Models, Molecular , Molecular Conformation , Ligands , Drug Discovery , Algorithms
14.
Fish Shellfish Immunol ; 149: 109556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608848

ABSTRACT

Japanese eel, Anguilla japonica, holds significant importance in Taiwanese aquaculture. With the intensification of eel farming, the impact of Edwardsiella tarda has become increasingly severe. Consequently, the abusive use of antibiotics has risen. Bacillus subtilis natto NTU-18, a strain of Bacillus with a high survival rate in feed processing, plays a crucial role in promoting intestinal health through competitive rejection, enhancing immune responses against bacterial pathogens, and improving intestinal health by modulating gastrointestinal microbiota to produce beneficial metabolites of mice and grass carp, Ctenopharyngodon idella. This study investigated the effects of different proportions (control, 0.25 %, 0.5 %, 1 %, and 2 %) of B. subtilis natto NTU-18 added to paste feed on the growth performance, intestinal morphology, and microbiota, expression of immune-related genes, and resistance to E. tarda in Japanese glass eel. The results indicated that the growth performance of all groups with B. subtilis natto NTU-18 added was significantly higher than that of the control group and did not impact the villi morphology. The expression of immune-related genes in the kidney, specifically HSP70 and SOD, was significantly higher from 0.5 % and above than the control; however, no significant differences were observed in CAT, POD, and HSP90. In the liver, significant differences were found in HSP70 and IgM above 0.25 % compared to the control group, with no significant differences in SOD, CAT, POD, and HSP90 among all groups. Additionally, intestinal microbiota analysis revealed that the 2 % additional group had significantly lower diversity than other groups, with Cetobacterium as the dominant species. The challenge test observed that the survival rates of the 0.5 % and 1 % groups were significantly higher. This research suggests that adding 0.5 % and 1 % of B. subtilis natto NTU-18 to the diet is beneficial for Japanese glass eel's immunity, growth performance, and disease resistance.


Subject(s)
Anguilla , Animal Feed , Bacillus subtilis , Diet , Disease Resistance , Fish Diseases , Gastrointestinal Microbiome , Intestines , Probiotics , Animals , Gastrointestinal Microbiome/drug effects , Anguilla/immunology , Anguilla/growth & development , Animal Feed/analysis , Disease Resistance/drug effects , Fish Diseases/immunology , Diet/veterinary , Probiotics/pharmacology , Probiotics/administration & dosage , Intestines/immunology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Edwardsiella tarda/physiology , Dietary Supplements/analysis , Immunity, Innate , Random Allocation
15.
Immunol Rev ; 323(1): 227-240, 2024 May.
Article in English | MEDLINE | ID: mdl-38577999

ABSTRACT

Humans exhibit considerable variability in their immune responses to the same immune challenges. Such variation is widespread and affects individual and population-level susceptibility to infectious diseases and immune disorders. Although the factors influencing immune response diversity are partially understood, what mechanisms lead to the wide range of immune traits in healthy individuals remain largely unexplained. Here, we discuss the role that natural selection has played in driving phenotypic differences in immune responses across populations and present-day susceptibility to immune-related disorders. Further, we touch on future directions in the field of immunogenomics, highlighting the value of expanding this work to human populations globally, the utility of modeling the immune response as a dynamic process, and the importance of considering the potential polygenic nature of natural selection. Identifying loci acted upon by evolution may further pinpoint variants critically involved in disease etiology, and designing studies to capture these effects will enrich our understanding of the genetic contributions to immunity and immune dysregulation.


Subject(s)
Selection, Genetic , Humans , Animals , Genetic Predisposition to Disease , Immunity/genetics , Genetic Variation , Genetics, Population , Phenotype , Disease Susceptibility/immunology
16.
Article in English | MEDLINE | ID: mdl-38653811

ABSTRACT

OBJECTIVE: Patient with carotid blowout syndrome (CBS) may demonstrated non-bleeding digital subtraction angiography (DSA) without identifying pseudoaneurysm or contrast extravasation. Our objective is to evaluate the clinical outcomes for this specific subset of patients. MATERIALS AND METHODS: A retrospective observational study was conducted on 172 CBS patients who received DSA for evaluation of transarterial embolization (TAE) between 2005 and 2022, of whom 19 patients had non-bleeding DSA and did not undergo TAE. RESULTS: The age (55.2 ± 7.3 vs. 54.8 ± 11.1), male sex (17/19 vs. 135/153), tumor size (5.6 ± 2.4 vs. 5.2 ± 2.2), cancer locations were similar (P > 0.05) between both groups; except for there were more pseudoaneurysm/active bleeding (85.6% vs. 0%) and less vascular irregularity (14.4% vs. 94.7%) in the TAE group (P < 0.001). In the multivariable Cox regression model adjusting for age, sex, and tumor size, non-bleeding DSA group was independently associated with recurrent bleeding compared to TAE group (adjusted hazard ratio = 3.5, 95% confidence interval: 1.9-6.4, P < 0.001). Furthermore, the presence of vascular irregularity was associated with segmental recurrent bleeding (adjusted HR = 8.0, 95% CI 2.7-23.3, P < 0.001). CONCLUSION: Patient showing non-bleeding DSA thus not having TAE had higher risk of recurrent bleeding, compared to patient who received TAE. Level of Evidence Level 4, Case Series.

18.
Adv Mater ; : e2402568, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682831

ABSTRACT

Solution-processed high-performing ambipolar organic phototransistors (OPTs) can enable low-cost integrated circuits. Here, a heteroatom engineering approach to modify the electron affinity of a low band gap diketopyrrolopyrole (DPP) co-polymer, resulting in well-balanced charge transport, a more preferential edge-on orientation and higher crystallinity, is demonstrated. Changing the comonomer heteroatom from sulfur (benzothiadiazole (BT)) to oxygen (benzooxadiazole (BO)) leads to an increased electron affinity and introduces higher ambipolarity. Organic thin film transistors fabricated from the novel PDPP-BO exhibit charge carrier mobility of 0.6 and 0.3 cm2 Vs⁻1 for electrons and holes, respectively. Due to the high sensitivity of the PDPP-based material and the balanced transport in PDPP-BO, its application as an NIR detector in an OPT architecture is presented. By maintaining a high on/off ratio (9 × 104), ambipolar OPTs are shown with photoresponsivity of 69 and 99 A W⁻1 and specific detectivity of 8 × 107 for the p-type operation and 4 × 109 Jones for the n-type regime. The high symmetric NIR-ambipolar OPTs are also evaluated as ambipolar photo-inverters, and show a 46% gain enhancement under illumination.

19.
Br Dent J ; 236(7): 510-514, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38609599
20.
J Formos Med Assoc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38614907

ABSTRACT

BACKGROUND/PURPOSE: This study addresses the delicate balance between healthcare personnel burnout and medical accessibility in the context of endovascular thrombectomy (EVT) services in urban areas. We aimed to determine the minimum number of hospitals providing EVT on rotation each day without compromising patient access. METHODS: Employing an optimization model, we developed shift schedules based on patient coverage rates and volumes during the pre-pandemic (2016-2018) and pandemic (2019-2021) periods. Starting with a minimum of two hospitals on duty per day, we gradually increased to a maximum of eight. Patient coverage rates, defined as the proportion of patients meeting bypass criteria and transported to rotating hospitals capable of EVT, were the primary outcomes. Sensitivity analyses explored the impact of varying patient transport intervals and accumulating patients over multiple years. RESULTS: Results from 7024 patient records revealed patient coverage rates of 92.5% (standard deviation [SD] 2.8%) during the pre-pandemic and 91.4% (SD 2.8%) during the pandemic, with at least two rotating hospitals daily. No significant differences were observed between schedules based on the highest patient volume and coverage rate months. A patient coverage rate of 98.99% was achieved with four rotating hospitals per day during the pre-pandemic period, with limited improvement beyond this threshold. Changing patient transport intervals and accumulating patients over six years (p = 0.83) had no significant impact on coverage rates. CONCLUSION: Our optimization model supports reducing the number of daily rotating hospitals by half while preserving a balance between patient accessibility and alleviating strain on medical teams.

SELECTION OF CITATIONS
SEARCH DETAIL
...