Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Formos Med Assoc ; 119(2): 595-600, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31653576

ABSTRACT

BACKGROUND/PURPOSE: Oral submucous fibrosis (OSF) represents a precancerous lesion of oral mucosa that may progress into oral cancer and its major etiological factor is areca nut chewing. Carboxyl-terminus of Hsp70-interacting protein (CHIP) functions as an ubiquitin E3 ligase and is associated with fibrosis diseases. In the current study, we sought to investigate whether CHIP participated in the areca nut-mediated OSF development. METHODS: The mRNA expression of CHIP in arecoline-stimulated buccal mucosal fibroblasts (BMFs) and OSF tissues was determined by qRT-PCR. Collagen gel contraction, migration and invasion assays were carried out to evaluate the myofibroblast activation. The protein expression levels of α-SMA and transglutaminase 2 (TGM2) were assessed by Western blot. RESULTS: The expression level of CHIP was reduced in BMFs following arecoline treatment in a dose-dependent manner, which was consistent with the observation of lower CHIP expression in OSF specimen compared to the normal counterparts. Ectopic expression of CHIP mitigated the myofibroblast activities, including elevated collagen gel contractility and cell motility. In addition, we showed that overexpression of CHIP downregulated the α-SMA and TGM-2 expression, which may lead to less fibrosis alteration. CONCLUSION: CHIP may not only function as a key regulator of protein quality control but also a critical deciding factor to oral fibrogenesis. Our findings suggested that CHIP possesses the anti-fibrotic effect, which may be mediated by TGM2 regulation. Restoration of CHIP could be a therapeutic direction to help OSF patients.


Subject(s)
Arecoline/administration & dosage , Cell Transdifferentiation/drug effects , Oral Submucous Fibrosis/pathology , Ubiquitin-Protein Ligases/metabolism , Actins/metabolism , Areca/chemistry , Cell Movement/drug effects , Down-Regulation , Fibroblasts/drug effects , GTP-Binding Proteins/metabolism , Humans , Mouth Mucosa/drug effects , Mouth Mucosa/pathology , Myofibroblasts/drug effects , Oral Submucous Fibrosis/chemically induced , Oral Submucous Fibrosis/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases/metabolism , Ubiquitin-Protein Ligases/drug effects
2.
Biomed Res Int ; 2016: 4052846, 2016.
Article in English | MEDLINE | ID: mdl-28053981

ABSTRACT

Bladder cancer is one of the major cancer types and both environmental factors and genetic background play important roles in its pathology. Kaohsiung is a high industrialized city in Taiwan, and here we focused on this region to evaluate the genetic effects on bladder cancer. Muscarinic acetylcholine receptor M3 (CHRM3) was reported as a key receptor in different cancer types. CHRM3 is located at 1q42-43 which was reported to associate with bladder cancer. Our study attempted to delineate whether genetic variants of CHRM3 contribute to bladder cancer in Chinese Han population in south Taiwan. Five selected SNPs (rs2165870, rs10802789, rs685550, rs7520974, and rs3738435) were genotyped for 30 bladder cancer patients and 60 control individuals and genetic association studies were performed. Five haplotypes (GTTAT, ATTGT, GCTAC, ACTAC, and ACCAC) were found significantly associated with low CHRM3 mRNA level and contributed to increased susceptibility of bladder cancer in Kaohsiung city after rigid 10000 consecutive permutation tests. To our knowledge, this is the first genetic association study that reveals the genetic contribution of CHRM3 gene in bladder cancer etiology.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Receptors, Muscarinic/genetics , Urinary Bladder Neoplasms/genetics , Aged , Female , Gene Expression Regulation, Neoplastic , Genotype , Haplotypes , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , Receptor, Muscarinic M3 , Taiwan , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...