Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Chem Res Toxicol ; 37(6): 981-990, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38776470

ABSTRACT

The production of e-cigarette aerosols through vaping processes is known to cause the formation of various free radicals and reactive oxygen species (ROS). Despite the well-known oxidative potential and cytotoxicity of fresh vaping emissions, the effects of chemical aging on exhaled vaping aerosols by indoor atmospheric oxidants are yet to be elucidated. Terpenes are commonly found in e-liquids as flavor additives. In the presence of indoor ozone (O3), e-cigarette aerosols that contain terpene flavorings can undergo chemical transformations, further producing ROS and reactive carbonyl species. Here, we simulated the aging process of the e-cigarette emissions in a 2 m3 FEP film chamber with 100 ppbv of O3 exposure for an hour. The aged vaping aerosols, along with fresh aerosols, were collected to detect the presence of ROS. The aged particles exhibited 2- to 11-fold greater oxidative potential, and further analysis showed that these particles formed a greater number of radicals in aqueous conditions. The aging process induced the formation of various alkyl hydroperoxides (ROOH), and through iodometric quantification, we saw that our aged vaping particles contained significantly greater amounts of these hydroperoxides than their fresh counterparts. Bronchial epithelial cells exposed to aged vaping aerosols exhibited an upregulation of the oxidative stress genes, HMOX-1 and GSTP1, indicating the potential for inhalation toxicity. This work highlights the indirect danger of vaping in environments with high ground-level O3, which can chemically transform e-cigarette aerosols into new particles that can induce greater oxidative damage than fresh e-cigarette aerosols. Given that the toxicological characteristics of e-cigarettes are mainly associated with the inhalation of fresh aerosols in current studies, our work may provide a perspective that characterizes vaping exposure under secondhand or thirdhand conditions as a significant health risk.


Subject(s)
Flavoring Agents , Oxidative Stress , Ozone , Reactive Oxygen Species , Terpenes , Vaping , Ozone/chemistry , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Humans , Flavoring Agents/chemistry , Flavoring Agents/analysis , Vaping/adverse effects , Terpenes/chemistry , Electronic Nicotine Delivery Systems , Aerosols/chemistry
2.
ACS EST Air ; 1(5): 426-437, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751608

ABSTRACT

Light-absorbing secondary organic aerosols (SOAs), also known as secondary brown carbon (BrC), are major components of wildfire smoke that can have a significant impact on the climate system; however, how environmental factors such as relative humidity (RH) influence their formation is not fully understood, especially for heterocyclic precursors. We conducted chamber experiments to investigate secondary BrC formation from the nighttime oxidation of furan and pyrrole, two primary heterocyclic precursors in wildfires, in the presence of pre-existing particles at RH < 20% and ∼ 50%. Our findings revealed that increasing RH significantly affected the size distribution dynamics of both SOAs, with pyrrole SOA showing a stronger potential to generate ultrafine particles via intensive nucleation processes. Higher RH led to increased mass fractions of oxygenated compounds in both SOAs, suggesting enhanced gas-phase and/or multiphase oxidation under humid conditions. Moreover, higher RH reduced the mass absorption coefficients of both BrC, contrasting with those from homocyclic precursors, due to the formation of non-absorbing high-molecular-weight oxygenated compounds and the decreasing mass fractions of molecular chromophores. Overall, our findings demonstrate the unique RH dependence of secondary BrC formation from heterocyclic precursors, which may critically modulate the radiative effects of wildfire smoke on climate change.

3.
Aerosol Sci Technol ; 58(6): 630-643, 2024.
Article in English | MEDLINE | ID: mdl-38774581

ABSTRACT

E-cigarette aerosols contain a complex mixture of harmful and potentially harmful chemicals. Once released into the environment, they evolve and become new sources of indoor air pollutants that could pose a significant threat to both users and non-users. However, current understanding of the physicochemical properties of e-cigarette aerosol constituents that govern gas-particle partitioning in the atmosphere is limited, making it difficult to estimate the health risks associated with exposure. Here, we used correlation gas chromatography (C-GC) and two-dimensional volatility basis set (2D-VBS) methods to determine the vapor pressures and volatility for commonly reported toxic and irritating e-cigarette aerosol constituents. The vapor pressures of target compounds at 298 K were estimated from the Antoine-type linear relationship between the vapor pressure of reference standards and their retention times. Our C-GC results showed an overall positive correlation (R = 0.84) with estimates using the EPI (Estimation Programs Interface) Suite. The volatility calculated by 2D-VBS correlates well with the calculated vapor pressure from both C-GC (R = 0.82) and EPI Suite (R = 0.85). The volatility distribution also indicated fresh e-cigarette aerosol constituents are mainly more volatile organic compounds. Our case study revealed that low-vapor-pressure compounds (e.g., σ-dodecalactone, γ-decalactone, and maltol) become enriched in the e-cigarette aerosols within 2 hours following vaping emissions. Overall, these findings demonstrate the applicability of the C-GC and 2D-VBS methods for determining the physiochemical properties of e-cigarette aerosol constituents, which can aid in assessing the dynamic chemical composition of e-cigarette aerosols and exposures to vaping emissions in indoor environments.

4.
ACS EST Air ; 1(4): 247-258, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633205

ABSTRACT

The chemical and optical properties of secondary organic aerosols (SOA) have been widely studied through environmental chamber experiments, and some of the results have been parametrized in atmospheric models to help understand their radiative effects and climate influence. While most chamber studies investigate the aerosol formed from a single volatile organic compound (VOC), the potential interactions between reactive intermediates derived from VOC mixtures are not well understood. In this study, we investigated the SOA formed from pure and mixtures of anthropogenic (phenol and 1-methylnaphthalene) and/or biogenic (longifolene) VOCs using continuous-flow, high-NOx photooxidation chamber experiments to better mimic ambient conditions. SOA optical properties, including single scattering albedo (SSA), mass absorption coefficient (MAC), and refractive index (RI) at 375 nm, and chemical composition, including the formation of oxygenated organic compounds, organic-nitrogen compounds (including organonitrates and nitro-organics), and the molecular structure of the major chromophores, were explored. Additionally, the imaginary refractive index values of SOA in the multi-VOC system were predicted using a linear-combination assumption and compared with the measured values. When two VOCs were oxidized simultaneously, we found evidence for changes in SOA chemical composition compared to SOA formed from single-VOC systems, and this change led to nonlinear effects on SOA optical properties. The nonlinear effects were found to vary between different systems.

5.
Environ Sci Technol ; 57(48): 20085-20096, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37983166

ABSTRACT

The light absorption properties of brown carbon (BrC), which are linked to molecular chromophores, may play a significant role in the Earth's energy budget. While nitroaromatic compounds have been identified as strong chromophores in wildfire-driven BrC, other types of chromophores remain to be investigated. Given the electron-withdrawing nature of carbonyls ubiquitous in the atmosphere, we characterized carbonyl chromophores in BrC samples from the nighttime oxidation of furan and pyrrole derivatives, which are important but understudied precursors of secondary organic aerosols primarily found in wildfire emissions. Various carbonyl chromophores were characterized and quantified in BrC samples, and their ultraviolet-visible spectra were simulated by using time-dependent density functional theory. Our findings suggest that chromophores with carbonyls bonded to nitrogen (i.e., imides and amides) derived from N-containing heterocyclic precursors substantially contribute to BrC light absorption. The quantified N-containing carbonyl chromophores contributed to over 40% of the total light absorption at wavelengths below 350 nm and above 430 nm in pyrrole BrC. The contributions of chromophores to total light absorption differed significantly by wavelength, highlighting their divergent importance in different wavelength ranges. Overall, our findings highlight the significance of carbonyl chromophores in secondary BrC and underscore the need for further investigation.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Carbon , Light , Aerosols/analysis , Pyrroles , Environmental Monitoring , Air Pollutants/analysis , Particulate Matter/analysis
6.
Chem Res Toxicol ; 36(11): 1814-1825, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37906555

ABSTRACT

Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).


Subject(s)
Butadienes , Oxidative Stress , Humans , Aged , Reactive Oxygen Species , Oxidation-Reduction , Butadienes/toxicity
7.
Environ Sci Technol Lett ; 10(9): 755-761, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37719205

ABSTRACT

Fluoroalkylether substances (ether PFAS) constitute a large group of emerging PFAS with uncertain environmental fate. Among them, GenX is the well-known alternative to perfluorooctanoic acid and one of the six proposed PFAS to be regulated by the U.S. Environmental Protection Agency. This study investigated the structure-biodegradability relationship for 12 different ether PFAS with a carboxylic acid headgroup in activated sludge communities. Only polyfluorinated ethers with at least one -CH2- moiety adjacent to or a C=C bond in the proximity of the ether bond underwent active biotransformation via oxidative and hydrolytic O-dealkylation. The bioreactions at ether bonds led to the formation of unstable fluoroalcohol intermediates subject to spontaneous defluorination. We further demonstrated that this aerobic biotransformation/defluorination could complement the advanced reduction process in a treatment train system to achieve more cost-effective treatment for GenX and other recalcitrant perfluorinated ether PFAS. These findings provide essential insights into the environmental fate of ether PFAS, the design of biodegradable alternative PFAS, and the development of cost-effective ether PFAS treatment strategies.

8.
Inhal Toxicol ; 35(5-6): 157-168, 2023.
Article in English | MEDLINE | ID: mdl-36877189

ABSTRACT

BACKGROUND: Exposure to diesel exhaust particles (DEP) has been linked to a variety of adverse health effects, including increased morbidity and mortality from cardiovascular diseases, chronic obstructive pulmonary disease (COPD), metabolic syndrome, and lung cancer. The epigenetic changes caused by air pollution have been associated with increased health risks. However, the exact molecular mechanisms underlying the lncRNA-mediated pathogenesis induced by DEP exposure have not been revealed. METHODS: Through RNA-sequencing and integrative analysis of both mRNA and lncRNA profiles, this study investigated the role of lncRNAs in altered gene expression in healthy and diseased human primary epithelial cells (NHBE and DHBE-COPD) exposed to DEP at a dose of 30 µg/cm2. RESULTS: We identified 503 and 563 differentially expressed (DE) mRNAs and a total of 10 and 14 DE lncRNAs in NHBE and DHBE-COPD cells exposed to DEP, respectively. In both NHBE and DHBE-COPD cells, enriched cancer-related pathways were identified at mRNA level, and 3 common lncRNAs OLMALINC, AC069234.2, and LINC00665 were found to be associated with cancer initiation and progression. In addition, we identified two cis-acting (TMEM51-AS1 and TTN-AS1) and several trans-acting lncRNAs (e.g. LINC01278, SNHG29, AC006064.4, TMEM51-AS1) only differentially expressed in COPD cells, which could potentially play a role in carcinogenesis and determine their susceptibility to DEP exposure. CONCLUSIONS: Overall, our work highlights the potential importance of lncRNAs in regulating DEP-induced gene expression changes associated with carcinogenesis, and individuals suffering from COPD are likely to be more vulnerable to these environmental triggers.


Subject(s)
Pulmonary Disease, Chronic Obstructive , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Particulate Matter/analysis , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/genetics , Epithelial Cells
9.
Chem Res Toxicol ; 36(1): 83-93, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36534744

ABSTRACT

Despite previous studies indicating the thermal stability of vitamin E acetate (VEA) at low temperatures, VEA has been shown to readily decompose into various degradation products such as alkenes, long-chain alcohols, and carbonyls such as duroquinone (DQ) at vaping temperatures of <200 °C. While most models simulate the thermal decomposition of e-liquids under pyrolysis conditions, numerous factors, including vaping behavior, device construction, and the surrounding environment, may impact the thermal degradation process. In this study, we investigated the role of the presence of molecular oxygen (O2) and transition metals in promoting thermal oxidation of e-liquids, resulting in greater degradation than predicted by pure pyrolysis. Thermal degradation of VEA was performed in inert (N2) and oxidizing atmospheres (clean air) in the absence and presence of Ni-Cr and Cu-Ni alloy nanopowders, metals commonly found in the heating coil and body of e-cigarettes. VEA degradation was analyzed using thermogravimetric analysis (TGA) and gas chromatography/mass spectrometry (GC/MS). While the presence of O2 was found to significantly enhance the degradation of VEA at both high (356 °C) and low (176 °C) temperatures, the addition of Cu-Ni to oxidizing atmospheres was found to greatly enhance VEA degradation, resulting in the formation of numerous degradation products previously identified in VEA vaping emissions. O2 and Cu-Ni nanopowder together were also found to significantly increase the production of OH radicals, which has implications for e-liquid degradation pathways as well as the potential risk of oxidative damage to biological systems in real-world vaping scenarios. Ultimately, the results presented in this study highlight the importance of oxidation pathways in VEA thermal degradation and may aid in the prediction of thermal degradation products from e-liquids.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Vitamin E/chemistry , Temperature , Acetates/chemistry
10.
Gut Microbes ; 14(1): 2130650, 2022.
Article in English | MEDLINE | ID: mdl-36206406

ABSTRACT

Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.


Subject(s)
Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Bacterial Adhesion , Glycosylation , Helicobacter Infections/microbiology , Helicobacter pylori/genetics , Humans , Lipopolysaccharides/metabolism , O Antigens/metabolism , Peptide Hydrolases/metabolism
11.
Environ Sci Technol ; 56(12): 7761-7770, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35675110

ABSTRACT

Nitrogen-containing heterocyclic volatile organic compounds (VOCs) are important components of wildfire emissions that are readily reactive toward nitrate radicals (NO3) during nighttime, but the oxidation mechanism and the potential formation of secondary organic aerosol (SOA) and brown carbon (BrC) are unclear. Here, NO3 oxidation of three nitrogen-containing heterocyclic VOCs, pyrrole, 1-methylyrrole (1-MP), and 2-methylpyrrole (2-MP), was investigated in chamber experiments to determine the effect of precursor structures on SOA and BrC formation. The SOA chemical compositions and the optical properties were analyzed using a suite of online and offline instrumentation. Dinitro- and trinitro-products were found to be the dominant SOA constituents from pyrrole and 2-MP, but not observed from 1-MP. Furthermore, the SOA from 2-MP and pyrrole showed strong light absorption, while that from 1-MP were mostly scattering. From these results, we propose that NO3-initiated hydrogen abstraction from the 1-position in pyrrole and 2-MP followed by radical shift and NO2 addition leads to light-absorbing nitroaromatic products. In the absence of a 1-position hydrogen, NO3 addition likely dominates the 1-MP chemistry. We also estimate that the total SOA mass and light absorption from pyrrole and 2-MP are comparable to those from phenolic VOCs and toluene in biomass burning, underscoring the importance of considering nighttime oxidation of pyrrole and methylpyrroles in air quality and climate models.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/chemistry , Air Pollutants/analysis , Carbon , Hydrogen , Nitrates , Nitrogen , Nitrogen Oxides , Pyrroles
12.
Phys Rev Lett ; 128(23): 231603, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749198

ABSTRACT

We numerically study an anyon chain based on the Haagerup fusion category and find evidence that it leads in the long-distance limit to a conformal field theory whose central charge is ∼2. Fusion categories generalize the concept of finite group symmetries to noninvertible symmetry operations, and the Haagerup fusion category is the simplest one which comes from neither finite groups nor affine Lie algebras. As such, ours is the first example of conformal field theories which have truly exotic generalized symmetries. Basically the same result was independently obtained in the preceding Letter [Phys. Rev. Lett. 128, 231602 (2022)PRLTAO0031-900710.1103/PhysRevLett.128.231602].

13.
Environ Sci Atmos ; 2(2): 241-251, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35419522

ABSTRACT

Organic hydroperoxides (ROOHs) play key roles in the atmosphere as a reactive intermediate species. Due to the low volatility and high hydrophilicity, ROOHs are expected to reside in atmospheric condensed phases such as aerosols, fogs, and cloud droplets. The decomposition mechanisms of ROOHs in the liquid phase are, however, still poorly understood. Here we report a temperature-dependent kinetics and theoretical calculation study of the aqueous-phase decompositions of C12 or C13 α-alkoxyalkyl-hydroperoxides (α-AHs) derived from ozonolysis of α-terpineol in the presence of 1-propanol, 2-propanol, and ethanol. We found that the temporal profiles of α-AH signals, detected as chloride-adducts by negative ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order rate coefficient k for α-AH decomposition increased as temperature increased, e.g., k(288 K) = (5.3 ± 0.2) × 10-4 s-1, k(298 K) = (1.2 ± 0.3) × 10-3 s-1, k(308 K) = (2.1 ± 1.4) × 10-3 s-1 for C13 α-AHs derived from the reaction of α-terpineol Criegee intermediates with 1-propanol in the solution at pH 4.5. Arrhenius plot analysis yielded an activation energy (E a) of 12.3 ± 0.6 kcal mol-1. E a of 18.7 ± 0.3 and 13.8 ± 0.9 kcal mol-1 were also obtained for the decomposition of α-AHs (at pH 4.5) derived from the reaction of α-terpineol Criegee intermediates with 2-propanol and with ethanol, respectively. Based on the theoretical kinetic and thermodynamic calculations, we propose that a proton-catalyzed mechanism plays a central role in the decomposition of these α-AHs in acidic aqueous organic media, while water molecules may also participate in the decomposition pathways and affect the kinetics. The decomposition of α-AHs could act as a source of H2O2 and multifunctionalized species in atmospheric condensed phases.

14.
PLoS One ; 17(3): e0265365, 2022.
Article in English | MEDLINE | ID: mdl-35324938

ABSTRACT

Nearly two years after vitamin E acetate (VEA) was identified as the potential cause of the 2019-2020 outbreak of e-cigarette, or vaping product-associated lung injuries (EVALI), the toxicity mechanisms of VEA vaping are still yet to be fully understood. Studies since the outbreak have found that e-liquids such as VEA undergo thermal degradation during the vaping process to produce various degradation products, which may pose a greater risk of toxicity than exposure to unvaped VEA. Additionally, a wide range of customizable parameters-including the model of e-cigarette used, puffing topography, or the applied power/temperature used to generate aerosols-have been found to influence the physical properties and chemical compositions of vaping emissions. However, the impact of heating coil temperature on the chemical composition of VEA vaping emissions has not been fully assessed. In this study, we investigated the emission product distribution of VEA vaping emissions produced at temperatures ranging from 176 to 356°C, corresponding to a variable voltage vape pen set at 3.3 to 4.8V. VEA degradation was found to be greatly enhanced with increasing temperature, resulting in a shift towards the production of lower molecular weight compounds, such as the redox active duroquinone (DQ) and short-chain alkenes. Low temperature vaping of VEA resulted in the production of long-chain molecules, such as phytol, exposure to which has been suggested to induce lung damage in previous studies. Furthermore, differential product distribution was observed in VEA degradation products generated from vaping and from pyrolysis using a tube furnace in the absence of the heating coil at equivalent temperatures, suggesting the presence of external factors such as metals or oxidation that may enhance VEA degradation during vaping. Overall, our findings indicate that vaping behavior may significantly impact the risk of exposure to toxic vaping products and potential for vaping-related health concerns.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Injury , Vaping , Acetates/chemistry , Humans , Lung Injury/chemically induced , Lung Injury/epidemiology , Temperature , Vaping/adverse effects , Vitamin E/metabolism
15.
Chem Res Toxicol ; 35(2): 254-264, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35077135

ABSTRACT

In late 2019, the outbreak of e-cigarette or vaping-associated lung injuries (EVALIs) in the United States demonstrated to the public the potential health risks of vaping. While studies since the outbreak have identified vitamin E acetate (VEA), a diluent of tetrahydrocannabinol (THC) in vape cartridges, as a potential contributor to lung injuries, the molecular mechanisms through which VEA may cause damage are still unclear. Recent studies have found that the thermal degradation of e-liquids during vaping can result in the formation of products that are more toxic than the parent compounds. In this study, we assessed the role of duroquinone (DQ) in VEA vaping emissions that may act as a mechanism through which VEA vaping causes lung damage. VEA vaping emissions were collected and analyzed for their potential to generate reactive oxygen species (ROS) and induce oxidative stress-associated gene expression in human bronchial epithelial cells (BEAS-2B). Significant ROS generation by VEA vaping emissions was observed in both acellular and cellular systems. Furthermore, exposure to vaping emissions resulted in significant upregulation of NQO1 and HMOX-1 genes in BEAS-2B cells, indicating a strong potential for vaped VEA to cause oxidative damage and acute lung injury; the effects are more profound than exposure to equivalent concentrations of DQ alone. Our findings suggest that there may be synergistic interactions between thermal decomposition products of VEA, highlighting the multifaceted nature of vaping toxicity.


Subject(s)
Acetates/metabolism , Benzoquinones/metabolism , Electronic Nicotine Delivery Systems , Lung Injury/metabolism , Vaping/metabolism , Vitamin E/metabolism , Acetates/chemistry , Benzoquinones/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Molecular Structure , Oxidation-Reduction , Vitamin E/chemistry
16.
Toxics ; 9(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34941780

ABSTRACT

It has been demonstrated that propylene glycol (PG), vegetable glycerin (VG), and flavoring chemicals can thermally degrade to form carbonyls during vaping, but less is known about carbonyl emissions produced by transformation of flavoring chemicals and the interactive effects among e-liquid constituents. This study characterized carbonyl composition and levels in vaping emissions of PG-VG (e-liquid base solvents) and four e-liquid formulations flavored with trans-2-hexenol, benzyl alcohol, l-(-)-menthol, or linalool. Utilizing gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS) methods, 14 carbonyls were identified and quantified. PG-VG emitted highest levels of formaldehyde, acetaldehyde, and acrolein. However, flavored e-liquids contributed to the production of a wider variety of carbonyls, with some carbonyls directly corresponding to the oxidation of alcohol moieties in flavoring compounds (e.g., trans-2-hexenol and benzyl alcohol transformed into trans-2-hexenal and benzaldehyde, respectively). Detections of formaldehyde-GSH and trans-2-hexenal-GSH adducts signify interactions of carbonyls with biological nucleophiles. The global reactivity descriptors (I, A, µ, η, and ω) and condensed Fukui parameters (fk0, fk-, fk+, and dual-descriptor) were computed to elucidate site reactivities of selected simple and α,ß-unsaturated carbonyls found in vaping emissions. Overall, this study highlights carbonyl emissions and reactivities and their potential health risk effects associated with vaping.

17.
J Expo Sci Environ Epidemiol ; 31(6): 1008-1016, 2021 11.
Article in English | MEDLINE | ID: mdl-34239037

ABSTRACT

BACKGROUND: Existing studies on the health effects of e-cigarettes focused on e-cigarette users themselves. To study the corresponding effects on passive vapers, it is crucial to quantify e-cigarette chemicals deposited in their airways. OBJECTIVE: This study proposed an innovative approach to estimate the deposited dose of e-cigarette chemicals in the passive vapers' airways. The effect of the distance between active and passive vapers on the deposited dose was also examined. METHODS: The chemical constituent analysis was conducted to detect Nicotine and flavoring agents in e-cigarette aerosol. The Mobile Aerosol Lung Deposition Apparatus (MALDA) was employed to conduct aerosol respiratory deposition experiments in real-life settings to generate real-time data. RESULTS: For e-cigarette aerosol in the ultrafine particle regime, the deposited doses in the alveolar region were on average 3.2 times higher than those in the head-to-TB airways, and the deposited dose in the passive vaper's airways increased when being closer to the active vaper. SIGNIFICANCE: With prolonged exposure and close proximity to active vapers, passive vapers may be at risk for potential health effects of harmful e-cigarette chemicals. The methodology developed in this study has laid the groundwork for future research on exposure assessment and health risk analysis for passive vaping.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Aerosols , Humans , Nicotine , Smokers , Vaping/adverse effects
18.
J Phys Chem Lett ; 12(25): 5903-5908, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34152154

ABSTRACT

We report the first synthesis of aluminum hexafluorophosphate (Al(PF6)3) and its electrochemical properties in dimethyl sulfoxide (DMSO). The single crystal structure of the synthesized Al(PF6)3 is revealed as [Al(DMSO)6](PF6)3, and 0.25 M Al(PF6)3 in DMSO with high ionic conductivity is obtained. The purity of this electrolyte was further confirmed with nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry. We then demonstrated the reversibility of Al deposition-stripping in this electrolyte using scanning electron microscopy and an X-ray photoelectron spectroscopy depth profiling study. The parasitic reaction involving DMSO decomposition during Al deposition is also identified via gas chromatography/electron ionization mass spectrometry.

19.
Chem Res Toxicol ; 34(3): 892-900, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33656867

ABSTRACT

Dimethyl selenide (DMSe) is one of the major volatile organoselenium compounds released into the atmosphere through plant metabolism and microbial methylation. DMSe has been recently revealed as a precursor of secondary organic aerosol (SOA), and its resultant SOA possesses strong oxidizing capability toward thiol groups that can perturb several major biological pathways in human airway epithelial cells and is linked to genotoxicity, DNA damage, and p53-mediated stress responses. Mounting evidence has suggested that long noncoding RNAs (lncRNAs) are involved in stress responses to internal and environmental stimuli. However, the underlying molecular interactions remain to be elucidated. In this study, we performed integrative analyses of lncRNA-mRNA coexpression in the transformed human bronchial epithelial BEAS-2B cell line exposed to DMSe-derived SOA. We identified a total of 971 differentially expressed lncRNAs in BEAS-2B cells exposed to SOA derived from O3 and OH oxidation of DMSe. Gene ontology (GO) network analysis of cis-targeted genes showed significant enrichment of DNA damage, apoptosis, and p53-mediated stress response pathways. trans-Acting lncRNAs, including PINCR, PICART1, DLGAP1-AS2, and LINC01629, known to be associated with human carcinogenesis, also showed altered expression in cell treated with DMSe-SOA. Overall, this study highlights the regulatory role of lncRNAs in altered gene expression induced by DMSe-SOA exposure.


Subject(s)
Epithelial Cells/drug effects , Lung/drug effects , Organoselenium Compounds/pharmacology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Aerosols/pharmacology , Cells, Cultured , Epithelial Cells/metabolism , Humans , Lung/metabolism , RNA-Seq
20.
J Phys Chem A ; 124(49): 10288-10295, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33231452

ABSTRACT

Ozonolysis of unsaturated organic species with water produces α-hydroxyalkyl-hydroperoxides (α-HHs), which are reactive intermediates that lead to the formation of H2O2 and multifunctionalized species in atmospheric condensed phases. Here, we report temperature-dependent rate coefficients (k) for the aqueous-phase decomposition of α-terpineol α-HHs at 283-318 K and terpinen-4-ol α-HHs at 313-328 K. The temporal profiles of α-HH signals, detected as chloride adducts by negative-ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order k for α-HH decomposition increased as temperature increased, e.g., k(288 K) = (4.7 ± 0.2) × 10-5, k(298 K) = (1.5 ± 0.4) × 10-4, k(308 K) = (3.4 ± 0.9) × 10-4, k(318 K) = (1.0 ± 0.2) × 10-3 s-1 for α-terpineol α-HHs at pH 6.1. Arrhenius plot analysis yielded activation energies of 17.9 ± 0.7 (pH 6.1) and 17.1 ± 0.2 kcal mol-1 (pH 6.2) for the decomposition of α-terpineol and terpinen-4-ol α-HHs, respectively. Activation energies of 18.6 ± 0.2 and 19.2 ± 0.5 kcal mol-1 were also obtained for the decomposition of α-terpineol α-HHs in acidified water at pH 5.3 and 4.5, respectively. Theoretical kinetic and thermodynamic calculations confirmed that both water-catalyzed and proton-catalyzed mechanisms play important roles in the decomposition of these α-HHs. The relatively strong temperature dependence of k suggests that the lifetime of these α-HHs in aqueous phases (e.g., aqueous aerosols, fog, cloud droplets, wet films) is controlled not only by the water content and pH but also by the temperature of these media.

SELECTION OF CITATIONS
SEARCH DETAIL
...