Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(45): 31312-31325, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955953

ABSTRACT

Two-dimensional (2D) materials have been one of the most popular objects in the research field of thermoelectric (TE) materials and have attracted substantial attention in recent years. Inspired by the synthesized 2H-MoSSe and numerous theoretical studies, we systematically investigated the electronic, thermal, and TE properties of Janus 2H-MXTe (M = Zr and Hf; X = S and Se) monolayers by using first-principles calculations. The phonon dispersion curves and AIMD simulations confirm the thermodynamic stabilities. Moreover, Janus 2H-MXTe were evaluated as indirect band-gap semiconductors with band gaps ranging from 0.56 to 0.90 eV using the HSE06 + SOC method. To evaluate the TE performance, firstly, we calculated the temperature-dependent carrier relaxation time with acoustic phonon scattering τac, impurity scattering τimp, and polarized scattering τpol. Secondly, the calculation of lattice thermal conductivity (κl) shows that these monolayers possess relatively poor κl with values of 3.4-5.4 W mK-1 at 300 K, which is caused by the low phonon lifetime and group velocity. After computing the electronic transport properties, we found that the n-type doped Janus 2H-MXTe monolayers exhibit a high Seebeck coefficient exceeding 200 µV K-1 at 300 K, resulting in a high TE power factor. Eventually, combining the electrical and thermal conductivities, the optimal dimensionless figure of merit (zT) at 300 K (900 K) can be obtained, which is 0.94 (3.63), 0.51 (2.57), 0.64 (2.72), and 0.50 (1.98) for n-type doping of ZrSeTe, HfSeTe, ZeSTe, and HfSTe monolayers. Particularly, the ZrSeTe monolayer shows the best TE performance with the maximal zT value. These results indicate the excellent application potential of Janus 2H-MXTe (M = Zr and Hf; X = S and Se) monolayers in TE materials.

2.
Heart Vessels ; 25(6): 500-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20936293

ABSTRACT

Aging plays an essential role in cardiac pathophysiology. Knowledge on the ventricular repolarization in very old individuals is limited. An increase of QT dispersion is associated with higher cardiovascular mortality. The purpose of this study is to investigate whether aging changes the QT dispersion in the very old. Heart rate, P wave duration, PR interval, QRS axis, QRS duration, QT interval, and QTc interval were measured from 12-lead resting ECG. QT dispersion (46 ± 21, 47 ± 17, 69 ± 31 ms, p < 0.005) was significantly increased in the age group ≧85 years (n = 29, 89 ± 4 years) than in the age group 75-84 years (n = 33, 79 ± 3 years) and the age group 65-74 years (n = 32, 68 ± 3 years). Aging modulates dispersion of ventricular repolarization, which may contribute to the cardiac mortality in the very old Asian population.


Subject(s)
Aging , Heart Diseases/physiopathology , Ventricular Function, Left , Action Potentials , Age Factors , Aged , Aged, 80 and over , Aging/ethnology , Asian People , Electrocardiography , Female , Heart Diseases/ethnology , Heart Rate , Humans , Linear Models , Male , Risk Assessment , Risk Factors , Taiwan , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...