Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Appl Opt ; 62(16): 4236-4244, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37706911

ABSTRACT

Optical simulations allow the evaluation of the absorption, reflection, and transmission of each functional layer of solar cells and, therefore, are of great importance for the design of high-efficiency crystalline silicon (c-Si) solar cells. Here, a multi-scale simulation method (MSM) based on ray and wave optics is proposed to investigate the optical characteristics of c-Si solar cells. The ray and wave optical methods are first independently employed on inverted pyramid glass sheets, where the latter one can describe the size-dependent interfacial scattering characteristics more accurately. Then the optical properties of a c-Si solar cell with a tunnel oxide passivated carrier-selective contact configuration are studied by employing the MSM, where scattering at the interfaces is acquired by a finite-difference time-domain method (wave optics). Since the MSM can accurately simulate optical modes such as the Rayleigh anomaly, Bloch mode, and Mie resonances, the reflection and transmission spectra of the whole device are in good agreement with the measured data. The proposed MSM has proven to be accurate for structures with functional thin films, which can be extended to hybrid tandem devices with top-level cells consisting of stacks of layers with similar dimensions.

2.
Nat Commun ; 14(1): 3285, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280223

ABSTRACT

As a promising candidate for high-density data storage and neuromorphic computing, cross-point memory arrays provide a platform to overcome the von Neumann bottleneck and accelerate neural network computation. In order to suppress the sneak-path current problem that limits their scalability and read accuracy, a two-terminal selector can be integrated at each cross-point to form the one-selector-one-memristor (1S1R) stack. In this work, we demonstrate a CuAg alloy-based, thermally stable and electroforming-free selector device with tunable threshold voltage and over 7 orders of magnitude ON/OFF ratio. A vertically stacked 64 × 64 1S1R cross-point array is further implemented by integrating the selector with SiO2-based memristors. The 1S1R devices exhibit extremely low leakage currents and proper switching characteristics, which are suitable for both storage class memory and synaptic weight storage. Finally, a selector-based leaky integrate-and-fire neuron is designed and experimentally implemented, which expands the application prospect of CuAg alloy selectors from synapses to neurons.

3.
Adv Mater ; 35(6): e2208042, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36433769

ABSTRACT

Colored solar panels, realized by depositing various reflection layers or structures, are emerging as power sources for building with visual aesthetics. However, these panels suffer from reduced photocurrent generation due to the less efficient light harvesting from visible light reflection and degraded power conversion efficiency (PCE). Here, color-patterned silicon heterojunction solar cells are achieved by incorporating luminescent quantum dots (QDs) with high quantum yields as light converters to realize an asthenic appearance with high PCE. It is found that large bandgap (blue) QD layers can convert UV light into visible light, which can notably alleviate the parasitic absorption by the front indium tin oxide and doped amorphous silicon. Additionally, a universal optical path model is proposed to understand the light transmission process, which is suitable for luminescent down-shift devices. In this study, solar cells with a PCE exceeding 23.5% are achieved using the combination of a blue QD layer and a top low refractive index anti-reflection layer. Based on our best knoledge,the obtained PCE is the highest for a color-patterned solar cell. The results suggest an enhanced strategy involving incorporation of luminescent QDs with an optical path design for high-performance photovoltaic panels with visual aesthetics.

4.
Opt Express ; 30(17): 31244-31255, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242211

ABSTRACT

The overall efficiency and image uniformity are important criteria for augmented reality display. The conventional in-coupling grating design intending to improve only the first-order diffraction efficiency without considering the multiple interactions with diffracted light in the waveguide is insufficient. In this work, the back-coupling loss (BCL) on the in-coupling surface relief grating, and the power of light arriving at the out-coupling grating over that of incident light (denoted as optical efficiency in waveguide, OEW) are introduced for the design of in-coupling grating. A simple and effective method to increase diffraction efficiency with unique angular selectivity is demonstrated by inserting an interlayer between the waveguide and grating. The optimized average OEW and its uniformity under a field of view of 40° are increased from 8.02% and 24.83% to 8.34% and 35.02% by introducing a region-selective MgF2 interlayer.

5.
ACS Appl Mater Interfaces ; 13(24): 28415-28423, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34120440

ABSTRACT

Passivating contacts that simultaneously promote carrier selectivity and suppress surface recombination are considered as a promising trend in the crystalline silicon (c-Si) photovoltaic industry. In this work, efficient p-type c-Si (p-Si) solar cells with cuprous oxide (Cu2O) hole-selective contacts are demonstrated. The direct p-Si/Cu2O contact leads to a substoichiometric SiOx interlayer and diffusion of Cu into the silicon substrate, which would generate a deep-level impurity behaving as carrier recombination centers. An Al2O3 layer is subsequently employed at the p-Si/Cu2O interface, which not only serves as a passivating and tunneling layer but also suppresses the redox reaction and Cu diffusion at the Si/Cu2O interface. In conjunction with the high work function of Au and the superior optical property of Ag, a power conversion efficiency up to 19.71% is achieved with a p-Si/Al2O3/Cu2O/Au/Ag rear contact. This work provides a strategy for reducing interfacial defects and lowering energy barrier height in passivating contact solar cells.

6.
Nanoscale Res Lett ; 16(1): 87, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34009527

ABSTRACT

Owing to its large work function, MoOX has been widely used for hole-selective contact in both thin film and crystalline silicon solar cells. In this work, thermally evaporated MoOX films are employed on the rear sides of p-type crystalline silicon (p-Si) solar cells, where the optical and electronic properties of the MoOX films as well as the corresponding device performances are investigated as a function of post-annealing treatment. The MoOX film annealed at 100 °C shows the highest work function and proves the best hole selectivity based on the results of energy band simulation and contact resistivity measurements. The full rear p-Si/MoOX/Ag-contacted solar cells demonstrate the best performance with an efficiency of 19.19%, which is the result of the combined influence of MoOX's hole selectivity and passivation ability.

7.
ACS Appl Mater Interfaces ; 12(32): 36778-36786, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32667771

ABSTRACT

Molybdenum oxide (MoOX, X < 3) has been successfully demonstrated as an efficient passivating hole-selective contact in crystalline Si (c-Si) heterojunction solar cells because of its large bandgap (∼3.2 eV) and work function (∼6.9 eV). However, the severe performance degradation coming from the instability of the MoOX and its interfaces has not been well addressed. In this work, we started with a c-Si(p)/MoOX heterojunction solar cell that yielded a power conversion efficiency (PCE) of 15.86%, in which the MoOX film was synthesized by industry-compatible atomic layer deposition (ALD). The initial PCE dropped to 10.20% after 2 days because of severe migration of O and Ag at the MoOX/Ag interface. We solved this by the insertion of a CrOX layer between the MoOX layer and the Ag electrode. The solar cell was found to be stable for more than 8 months in air because of the suppression of interface degradation. Our work demonstrates an effective way of improving the stability of silicon solar cells with transition metal oxide carrier selective contacts.

8.
ACS Appl Mater Interfaces ; 12(23): 26184-26192, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32392028

ABSTRACT

Nanostructured metal back reflectors (BRs) are playing an important role in thin-film solar cells, which facilitates an increased optical path length within a relatively thin absorbing layer. In this study, three nanotextured plasmonic metal (copper, gold, and silver) BRs underneath flexible thin-film amorphous silicon solar cells are systematically investigated. The solar cells with BRs demonstrate an excellent light harvesting capability in the long-wavelength region. With the combination of hybrid cavity resonances, horizontal modes, and surface plasmonic resonances, more incident light is coupled into the photoactive layer. Compared to the reference cells, the three devices with plasmonic BRs show lower parasitic absorptions with different individual absorption distributions. Both experimental and simulated results indicate that the silver BR cells delivered the best performance with a promising power conversion efficiency of 7.26%. These rational designs of light harvesting nanostructures provide guidelines for high-performance thin-film solar cells and other optoelectronic devices.

9.
Adv Sci (Weinh) ; 4(9): 1700079, 2017 09.
Article in English | MEDLINE | ID: mdl-28932667

ABSTRACT

Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.

10.
ACS Appl Mater Interfaces ; 8(17): 10929-36, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27052357

ABSTRACT

Three-dimensional (3-D) structures have triggered tremendous interest for thin-film solar cells since they can dramatically reduce the material usage and incident light reflection. However, the high aspect ratio feature of some 3-D structures leads to deterioration of internal electric field and carrier collection capability, which reduces device power conversion efficiency (PCE). Here, we report high performance flexible thin-film amorphous silicon solar cells with a unique and effective light trapping scheme. In this device structure, a polymer nanopillar membrane is attached on top of a device, which benefits broadband and omnidirectional performances, and a 3-D nanostructure with shallow dent arrays underneath serves as a back reflector on flexible titanium (Ti) foil resulting in an increased optical path length by exciting hybrid optical modes. The efficient light management results in 42.7% and 41.7% remarkable improvements of short-circuit current density and overall efficiency, respectively. Meanwhile, an excellent flexibility has been achieved as PCE remains 97.6% of the initial efficiency even after 10 000 bending cycles. This unique device structure can also be duplicated for other flexible photovoltaic devices based on different active materials such as CdTe, Cu(In,Ga)Se2 (CIGS), organohalide lead perovskites, and so forth.

11.
Opt Lett ; 39(2): 331-4, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24562139

ABSTRACT

We propose an efficient multiband absorber comprised of a truncated, one-dimensional periodic metal-dielectric photonic crystal and a reflective substrate. The reflective substrate is essentially an optically thick metallic film. Such a planar device is easier to fabricate compared to absorbers with complicated shapes. For a four-unit cell device, all four of the absorption peaks can be optimized with efficiencies higher than 95 percent. Moreover, those absorption peaks are insensitive to the polarization and incident angle. The influences of the geometrical parameters and the refractive index of the dielectric on the device performance also are discussed. Furthermore, we found that the number of absorption peaks within each photonic band precisely corresponds to the number of unit cells because the truncated photonic crystal lattices select resonant modes. We also show that the total absorption efficiency gradually increases when there are more periods of the metal-dielectric composite layer placed on top of the metallic substrate. We expect this work to have potential applications in solar energy harvesting and thermal emission tailoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...