Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.468
Filter
1.
Article in English | MEDLINE | ID: mdl-38822785

ABSTRACT

Stretchable strain sensors have gained increasing popularity as wearable devices to convert mechanical deformation of the human body into electrical signals. Two-dimensional transition metal carbides (Ti3C2Tx MXene) are promising candidates to achieve excellent sensitivity. However, MXene films have been limited in operating strain ranges due to rapid crack propagation during stretching. In this regard, this study reports MXene/carbon nanotube bilayer films with tunable sensitivity and working ranges. The device is fabricated using a scalable process involving spray deposition of well-dispersed nanomaterial inks. The bilayer sensor's high sensitivity is attributed to the cracks that form in the MXene film, while the compliant carbon nanotube layer extends the working range by maintaining conductive pathways. Moreover, the response of the sensor is easily controlled by tuning the MXene loading, achieving a gauge factor of 9039 within 15% strain at 1.92 mg/cm2 and a gauge factor of 1443 within 108% strain at 0.55 mg/cm2. These tailored properties can precisely match the operation requirements during the wearable application, providing accurate monitoring of various body movements and physiological activities. Additionally, a smart glove with multiple integrated strain sensors is demonstrated as a human-machine interface for the real-time recognition of hand gestures based on a machine-learning algorithm. The design strategy presented here provides a convenient avenue to modulate strain sensors for targeted applications.

3.
World J Clin Oncol ; 15(4): 523-530, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38689621

ABSTRACT

Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties. It also exhibits significant anti-tumor activity, suppressing tumor growth in vitro and in vivo. The current body of research on Britanin includes thirty papers predominantly related to neoplasms, the majority of which are gastrointestinal tumors that have not been summarized before. To drive academic debate, the present paper reviews the available research on Britanin in gastrointestinal tumors. It also outlines novel research directions using data not directly concerned with the digestive system, but which could be adopted in future gastrointestinal research. Britanin was found to counteract liver, colorectal, pancreatic, and gastric tumors, by regulating proliferation, apoptosis, autophagy, immune response, migration, and angiogenesis. As confirmed in pancreatic, gastric, and liver cancer, its most commonly noted molecular effects include nuclear factor kappa B and B-cell lymphoma 2 downregulation, as well as Bcl-2-associated X protein upregulation. Moreover, it has been found to induce the Akt kinase and Forkhead box O1 axis, activate the AMP-activated protein kinase pathway, elevate interleukin-2 and peroxisome proliferator-activated receptor-γ levels, reduce interleukin-10, as well as downregulate matrix metalloproteinase-9, Twist family bHLH transcription factor 1, and cyclooxygenase-2. It also inhibits Myc-HIF1α interaction and programmed death ligand 1 transcription by interrupting the Ras/ RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling. Future research should aim to unravel the link between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia, as compelling data have been provided by studies outside the gastrointestinal context. Since the cytotoxicity of Britanin on noncancerous cells is significantly lower than that on tumor cells, while still being effective against the latter, further in-depth studies with the use of animal models are merited. The compound exhibits pleiotropic biological activity and offers considerable promise as an anti-cancer agent, which may address the current paucity of treatment options and high mortality rate among patients with gastrointestinal tumors.

4.
Nano Lett ; 24(19): 5904-5912, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700588

ABSTRACT

Stretchable electroluminescent devices represent an emerging optoelectronic technology for future wearables. However, their typical construction on sub-millimeter-thick elastomers has limited moisture permeability, leading to discomfort during long-term skin attachment. Although breathable textile displays may partially address this issue, they often have distinct visual appearances with discrete emissions from fibers or fiber junctions. This study introduces a convenient procedure to create stretchable, permeable displays with continuous luminous patterns. The design utilizes ultrathin nanocomposite devices embedded in a porous elastomeric microfoam to achieve high moisture permeability. These displays also exhibit excellent deformability, low-voltage operation, and excellent durability. Additionally, the device is decorated with fluorinated silica nanoparticles to achieve self-cleaning and washable capabilities. The practical implementation of these nanocomposite devices is demonstrated by creating an epidermal counter display that allows intimate integration with the human body. These developments provide an effective design of stretchable and breathable displays for comfortable wearing.

5.
Article in English | MEDLINE | ID: mdl-38797909

ABSTRACT

Hemophilia is a plasma bleeding disorder characterized by a deficiency of certain blood clotting factors. The most common forms of this disease, i.e., type A and type B, affect approximately 400,000 people worldwide. Without appropriate treatment ensuring the proper coagulation cascade, this disease may lead to serious disability. Minimizing patient discomfort is possible via replacement therapy, consisting of the substitution of a missing coagulation factor via intravenous administration. Frequent medication and the risk related to factor inhibitors are significant disadvantages, necessitating the improvement of current therapies or the development of novel ones. This review examines the humanized bispecific antibody Emicizumab which ensures hemostasis by mimicking the action of the coagulation factor VIII, a deficiency of which causes type A hemophilia. The paper outlines the topic and then summarizes available clinical trials on Emicizumab in type A hemophilia. Several interventional clinical trials have found Emicizumab to be effective in decreasing bleeding episodes and raising patient satisfaction among various hemophilia A populations. Current Emicizumab-related trials are forecast to be completed between 2024 and 2030, and in addition to congenital hemophilia A, the trials cover acquired hemophilia A and patients playing sports. Providing a more comprehensive understanding of Emicizumab may revolutionize the management of hemophilia type A and improve quality of life. Conclusively, Emicizumab is a gentler therapy owing to subcutaneous delivery and fewer injections, which reduces injection-site reactions and makes therapy less burdensome, ultimately decreasing hospital visits and indirect costs.

6.
Front Bioeng Biotechnol ; 12: 1337808, 2024.
Article in English | MEDLINE | ID: mdl-38681963

ABSTRACT

Introduction: Magnetic Resonance Imaging (MRI) is essential in diagnosing cervical spondylosis, providing detailed visualization of osseous and soft tissue structures in the cervical spine. However, manual measurements hinder the assessment of cervical spine sagittal balance, leading to time-consuming and error-prone processes. This study presents the Pyramid DBSCAN Simple Linear Iterative Cluster (PDB-SLIC), an automated segmentation algorithm for vertebral bodies in T2-weighted MR images, aiming to streamline sagittal balance assessment for spinal surgeons. Method: PDB-SLIC combines the SLIC superpixel segmentation algorithm with DBSCAN clustering and underwent rigorous testing using an extensive dataset of T2-weighted mid-sagittal MR images from 4,258 patients across ten hospitals in China. The efficacy of PDB-SLIC was compared against other algorithms and networks in terms of superpixel segmentation quality and vertebral body segmentation accuracy. Validation included a comparative analysis of manual and automated measurements of cervical sagittal parameters and scrutiny of PDB-SLIC's measurement stability across diverse hospital settings and MR scanning machines. Result: PDB-SLIC outperforms other algorithms in vertebral body segmentation quality, with high accuracy, recall, and Jaccard index. Minimal error deviation was observed compared to manual measurements, with correlation coefficients exceeding 95%. PDB-SLIC demonstrated commendable performance in processing cervical spine T2-weighted MR images from various hospital settings, MRI machines, and patient demographics. Discussion: The PDB-SLIC algorithm emerges as an accurate, objective, and efficient tool for evaluating cervical spine sagittal balance, providing valuable assistance to spinal surgeons in preoperative assessment, surgical strategy formulation, and prognostic inference. Additionally, it facilitates comprehensive measurement of sagittal balance parameters across diverse patient cohorts, contributing to the establishment of normative standards for cervical spine MR imaging.

7.
J Agric Food Chem ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607257

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation and inflammation. Epigallocatechin gallate (EGCG) has been proven to be effective against NAFLD, but its hepatoprotective mechanisms based on the "gut microbiota-barrier-liver axis" are still not fully understood. Herein, the results demonstrated that EGCG effectively ameliorated NAFLD phenotypes and metabolic disorders in rats fed a high-fat diet (HFD), and inhibited intestinal barrier dysfunction and inflammation, which is also supported in the experiment of Caco-2 cells. Moreover, EGCG could restore gut microbiota diversity and composition, particularly promoting beneficial microbes, including short-chain fatty acids (SCFAs) producers, such as Lactobacillus, and suppressing Gram-negative bacteria, such as Desulfovibrio. The microbial modulation raised SCFA levels, decreased lipopolysaccharide levels, inhibited the TLR4/NF-κB pathway, and strengthened intestinal barrier function via Nrf2 pathway activation, thereby alleviating liver steatosis and inflammation. Spearman's correlation analysis showed that 24 key OTUs, negatively or positively associated with NAFLD and metabolic disorders, were also reshaped by EGCG. Our results suggested that a combinative improvement of EGCG on gut microbiota dysbiosis, intestinal barrier dysfunction, and inflammation might be a potential therapeutic target for NAFLD.

8.
Materials (Basel) ; 17(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612209

ABSTRACT

Typically, in the manufacturing of GH4169 superalloy forgings, the multi-process hot forming that consists of pre-deformation, heat treatment and final deformation is required. This study focuses on the microstructural evolution throughout hot working processes. Considering that δ phase can promote nucleation and limit the growth of grains, a process route was designed, including pre-deformation, aging treatment (AT) to precipitate sufficient δ phases, high temperature holding (HTH) to uniformly heat the forging, and final deformation. The results show that the uneven strain distribution after pre-deformation has a significant impact on the subsequent refinement of the grain microstructure due to the complex coupling relationship between the evolution of the δ phase and recrystallization behavior. After the final deformation, the fine-grain microstructure with short rod-like δ phases as boundaries is easy to form in the region with a large strain of the pre-forging. However, necklace-like mixed grain microstructure is formed in the region with a small strain of the pre-forging. In addition, when the microstructure before final deformation consists of mixed grains, dynamic recrystallization (DRX) nucleation behavior preferentially depends on kernel average misorientation (KAM) values. A large KAM can promote the formation of DRX nuclei. When the KAM values are close, a smaller average grain size of mixed-grain microstructure is more conductive to promote the DRX nucleation. Finally, the interaction mechanisms between δ phase and DRX nucleation are revealed.

9.
Materials (Basel) ; 17(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38591372

ABSTRACT

In the present work, the effects of aging treatment on the microstructures of a TC18 alloy are studied. The influence of aging treatment on the tensile properties and failure mechanisms is systematically analyzed. It is found that the size and morphology of the primary α (αp) phases are insensitive to aging temperature and time. Furthermore, the aging temperature and time dramatically influence the precipitation of the secondary α (αs) phases. Massive αs phases precipitate and gradually coarsen, and finally weave together by increasing the aging temperature or extending the aging time. The variations in αp and αs phases induced by aging parameters also affect the mechanical properties. Both yield strength (YS) and ultimate tensile strength (UTS) first increase and then decrease by increasing the aging temperature and time, while ductility first decreases and then increases. There is an excellent balance between the strengths and ductility. When the aging temperature is changed from 450 to 550 °C, YS varies from 1238.6 to 1381.6 MPa, UTS varies from 1363.2 to 1516.8 MPa, and the moderate elongation ranges from 9.0% to 10.3%. These results reveal that the thickness of αs phases is responsible for material strengths, while the content of α phases can enhance material ductility. The ductile characteristics of the alloy with coarser αs phases are more obvious than those with thinner αs phases. Therefore, the aging treatment is helpful for the precipitation and homogeneous distribution of αs phases, which are essential for balancing the strengths and ductility of the studied Ti alloy.

10.
World J Gastrointest Surg ; 16(3): 790-806, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577095

ABSTRACT

BACKGROUND: Upper gastrointestinal bleeding (UGIB) is a common medical emergency and early assessment of its outcomes is vital for treatment decisions. AIM: To develop a new scoring system to predict its prognosis. METHODS: In this retrospective study, 692 patients with UGIB were enrolled from two centers and divided into a training (n = 591) and a validation cohort (n = 101). The clinical data were collected to develop new prognostic prediction models. The endpoint was compound outcome defined as (1) demand for emergency surgery or vascular intervention, (2) being transferred to the intensive care unit, or (3) death during hospitalization. The models' predictive ability was compared with previously established scores by receiver operating characteristic (ROC) curves. RESULTS: Totally 22.2% (131/591) patients in the training cohort and 22.8% (23/101) in the validation cohort presented poor outcomes. Based on the stepwise-forward Logistic regression analysis, eight predictors were integrated to determine a new post-endoscopic prognostic scoring system (MH-STRALP); a nomogram was determined to present the model. Compared with the previous scores (GBS, Rockall, ABC, AIMS65, and PNED score), MH-STRALP showed the best prognostic prediction ability with area under the ROC curves (AUROCs) of 0.899 and 0.826 in the training and validation cohorts, respectively. According to the calibration curve, decision curve analysis, and internal cross-validation, the nomogram showed good calibration ability and net clinical benefit in both cohorts. After removing the endoscopic indicators, the pre-endoscopic model (pre-MH-STRALP score) was conducted. Similarly, the pre-MH-STRALP score showed better predictive value (AUROCs of 0.868 and 0.767 in the training and validation cohorts, respectively) than the other pre-endoscopic scores. CONCLUSION: The MH-STRALP score and pre-MH-STRALP score are simple, convenient, and accurate tools for prognosis prediction of UGIB, and may be applied for early decision on its management strategies.

11.
Front Cell Infect Microbiol ; 14: 1328741, 2024.
Article in English | MEDLINE | ID: mdl-38665877

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common systemic disorder related to endocrine disorders, affecting the fertility of women of childbearing age. It is associated with glucose and lipid metabolism disorders, altered gut microbiota, and insulin resistance. Modern treatments like pioglitazone, metformin, and spironolactone target specific symptoms of PCOS, while in Chinese medicine, moxibustion is a common treatment. This study explores moxibustion's impact on PCOS by establishing a dehydroepiandrosterone (DHEA)-induced PCOS rat model. Thirty-six specific pathogen-free female Sprague-Dawley rats were divided into four groups: a normal control group (CTRL), a PCOS model group (PCOS), a moxibustion treatment group (MBT), and a metformin treatment group (MET). The MBT rats received moxibustion, and the MET rats underwent metformin gavage for two weeks. We evaluated ovarian tissue changes, serum testosterone, fasting blood glucose (FBG), and fasting insulin levels. Additionally, we calculated the insulin sensitivity index (ISI) and the homeostasis model assessment of insulin resistance index (HOMA-IR). We used 16S rDNA sequencing for assessing the gut microbiota, 1H NMR spectroscopy for evaluating metabolic changes, and Spearman correlation analysis for investigating the associations between metabolites and gut microbiota composition. The results indicate that moxibustion therapy significantly ameliorated ovarian dysfunction and insulin resistance in DHEA-induced PCOS rats. We observed marked differences in the composition of gut microbiota and the spectrum of fecal metabolic products between CTRL and PCOS rats. Intriguingly, following moxibustion intervention, these differences were largely diminished, demonstrating the regulatory effect of moxibustion on gut microbiota. Specifically, moxibustion altered the gut microbiota by increasing the abundance of UCG-005 and Turicibacter, as well as decreasing the abundance of Desulfovibrio. Concurrently, we also noted that moxibustion promoted an increase in levels of short-chain fatty acids (including acetate, propionate, and butyrate) associated with the gut microbiota of PCOS rats, further emphasizing its positive impact on gut microbes. Additionally, moxibustion also exhibited effects in lowering FBG, testosterone, and fasting insulin levels, which are key biochemical indicators associated with PCOS and insulin resistance. Therefore, these findings suggest that moxibustion could alleviate DHEA-induced PCOS by regulating metabolic levels, restoring balance in gut microbiota, and modulating interactions between gut microbiota and host metabolites.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Insulin Resistance , Moxibustion , Polycystic Ovary Syndrome , Rats, Sprague-Dawley , Animals , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/metabolism , Female , Moxibustion/methods , Rats , Dehydroepiandrosterone/metabolism , Blood Glucose/metabolism , Insulin/blood , Insulin/metabolism , Metformin/pharmacology , Testosterone/blood , Ovary/metabolism , Ovary/microbiology
12.
J Affect Disord ; 356: 470-476, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608766

ABSTRACT

Previous large-sample postmortem study revealed that the expression of miR-1202 in brain tissues from Brodmann area 44 (BA44) was dysregulated in patients with major depressive disorder (MDDs). However, the specific in vivo neuropathological mechanism of miR-1202 as well as its interplay with BA44 circuits in the depressed brain are still unclear. Here, we performed a case-control study with imaging-genetic approach based on resting-state functional magnetic resonance imaging (MRI) data and miR-1202 quantification from 110 medication-free MDDs and 102 healthy controls. Serum-derived circulating exosomes that readily cross the blood-brain barrier were isolated to quantify miR-1202. For validation, repeated MR scans were performed after a six-week follow-up of antidepressant treatment on a cohort of MDDs. Voxelwise factorial analysis revealed two brain areas (including the striatal-thalamic region) in which the effect of depression on the functional connectivity with BA44 was significantly dependent on the expression level of exosomal miR-1202. Moreover, longitudinal change of the BA44 connectivity with the striatal-thalamic region in MDDs after antidepressant treatment was found to be significantly related to the level of miR-1202 expression. These findings revealed that the in vivo neuropathological effect of miR-1202 dysregulation in depression is possibly exerted by mediating neural functional abnormalities in BA44-striatal-thalamic circuits.


Subject(s)
Depressive Disorder, Major , Exosomes , Magnetic Resonance Imaging , MicroRNAs , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Male , Female , MicroRNAs/genetics , Adult , Exosomes/metabolism , Exosomes/genetics , Case-Control Studies , Middle Aged , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Thalamus/diagnostic imaging , Thalamus/metabolism , Thalamus/physiopathology , Brain/diagnostic imaging , Brain/physiopathology
13.
Stat Med ; 43(10): 1883-1904, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38634277

ABSTRACT

Biomarker stratified clinical trial designs are versatile tools to assess biomarker clinical utility and address its relationship with clinical endpoints. Due to imperfect assays and/or classification rules, biomarker status is prone to errors. To account for biomarker misclassification, we consider a two-stage stratified design for survival outcomes with an adjustment for misclassification in predictive biomarkers. Compared to continuous and/or binary outcomes, the test statistics for survival outcomes with an adjustment for biomarker misclassification is much more complicated and needs to take special care. We propose to use the information from the observed biomarker status strata to construct adjusted log-rank statistics for true biomarker status strata. These adjusted log-rank statistics are then used to develop sequential tests for the global (composite) hypothesis and component-wise hypothesis. We discuss the power analysis with the control of the type-I error rate by using the correlations between the adjusted log-rank statistics within and between the design stages. Our method is illustrated with examples of the recent successful development of immunotherapy in nonsmall-cell lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Biomarkers/analysis , Research Design , Clinical Trials as Topic
14.
BMC Musculoskelet Disord ; 25(1): 289, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614982

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the psychological distress pre-operatively, at 3, 6, and 12 months in patients who underwent lumbar spine fusion surgery. METHODS: A total of 440 patients received instrumented lumbar spine fusion were enrolled. Psychological distress was evaluated using the Modified Somatic Perception Questionnaire (MSPQ) and the Modified Zung Depressive Index (ZDI). The results of lumbar fusion surgery were evaluated using the Oswestry Disability Index (ODI), the Japanese Orthopedic Association (JOA-29), and the visual analog scale (VAS). RESULTS: Psychological distress was reported among 23% of patients and 7, 5.5, and 4.0% of the patients preoperatively, at 3, 6, and 12 months after lumbar surgery, respectively. The mean MSPQ score decreased from 8.78 (before surgery) to 4.30, 3.52, and 3.43 at 3, 6 and 12 months in after surgery, respectively, in patients with psychological distress patients (p < 0.001). The mean ZDI score decreased from 17.78 to 12.48, 10.35, and 9.61 (p < 0.001). The mean ODI score decreased from 22.91 to 11.78, 10.13, and 9.96 (P < 0.001). The mean JOA score increased from 13.65 to 22.30, 23.43, and 23.61 (P < 0.001). The mean low back pain (LBP) VAS score decreased from 4.48 to 1.96, 1.52, and 1.51 (P < 0.001); moreover, the mean leg pain (LP) VAS score decreased from 5.30 to 1.30, 1.04, and 1.03 (P < 0.001). CONCLUSIONS: Patients with psychological distress may experience surgical intervention benefits equal to those of ordinary patients. Moreover, reduced pain and disability after surgical intervention may also alleviate psychological distress. Hence, we highly recommend that patients with psychological distress undergo surgical intervention as normal patients do, but appropriate screening measures and interventions are necessary.


Subject(s)
Psychological Distress , Spinal Fusion , Humans , Spinal Fusion/adverse effects , Lumbosacral Region , Neurosurgical Procedures , Pain
15.
Front Surg ; 11: 1386747, 2024.
Article in English | MEDLINE | ID: mdl-38486797

ABSTRACT

[This corrects the article DOI: 10.3389/fsurg.2024.1335144.].

16.
Small ; : e2400315, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488741

ABSTRACT

Currently, a major target in the development of Na-ion batteries is the concurrent attainment of high-rate capacity and long cycling stability. Herein, an advanced Na-ion battery with high-rate capability and long cycle stability based on Li/Ti co-doped P2-type Na0.67 Mn0.67 Ni0.33 O2 , a host material with high-voltage zero-phase transition behavior and fast Na+ migration/conductivity during dynamic de-embedding process, is constructed. Experimental results and theoretical calculations reveal that the two-element doping strategy promotes a mutually reinforcing effect, which greatly facilitates the transfer capability of Na+ . The cation Ti4+ doping is a dominant high voltage, significantly elevating the operation voltage to 4.4 V. Meanwhile, doping Li+ shows the function in charge transfer, improving the rate performance and prolonging cycling lifespan. Consequently, the designed P2-Na0.75 Mn0.54 Ni0.27 Li0.14 Ti0.05 O2 cathode material exhibits discharge capacities of 129, 104, and 85 mAh g- 1 under high voltage of 4.4 V at 1, 10, and 20 C, respectively. More importantly, the full-cell delivers a high initial capacity of 198 mAh g-1 at 0.1 C (17.3 mA g-1 ) and a capacity retention of 73% at 5 C (865 mA g-1 ) after 1000 cycles, which is seldom witnessed in previous reports, emphasizing their potential applications in advanced energy storage.

17.
Sci Total Environ ; 924: 171596, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38461990

ABSTRACT

Climate change affects microbial community physiological strategies and thus regulates global soil organic carbon (SOC) decomposition. However, SOC decomposition by microorganisms, depending on home-field advantage (HFA, indicating a faster decomposition rate in 'Home' than 'Away' conditions) or environmental advantage (EA, indicating a faster decomposition rate in warmer-wetter environments than in colder-drier environments) remains unknown. Here, a soil transplantation experiment was conducted between warmer-wetter and colder-drier evergreen broadleaved forests in subtropical China. Specifically, soil samples were collected along a 60 cm soil profile, including 0-15, 15-30, 30-45, and 45-60 cm layers after one year of transplantation. SOC fractions, soil chemical properties, and microbial communities were evaluated to assess where there was an HFA of EA in SOC decomposition, along with an exploration of internal linkages. Significant HFAs were observed, particularly in the deep soils (30-60 cm) (P < 0.05), despite the lack of a significant EA along a soil profile, which was attributed to environmental changes affecting soil fungal communities and constraining SOC decomposition in 'Away' conditions. The soils transplanted from warmer-wetter to colder-drier environments changed the proportions of Mortiereltomycota or Basidiomycota fungal taxa in deep soils. Furthermore, the shift from colder-drier to warmer-wetter environments decreased fungal α-diversity and the proportion of fungal necromass carbon, ultimately inhibiting SOC decomposition in 'Away' conditions. However, neither HFAs nor EAs were significantly present in the topsoil (0-30 cm), possibly due to the broader adaptability of bacterial communities in these layers. These results suggest that the HFA of SOC decomposition in deep soils may mostly depend on the plasticity of fungal communities. Moreover, these results highlight the key roles of microbial communities in the SOC decomposition of subtropical forests, especially in deep soils that are easily ignored.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/chemistry , Forests , Climate Change , Bacteria , Soil Microbiology
18.
Knee Surg Sports Traumatol Arthrosc ; 32(5): 1264-1274, 2024 May.
Article in English | MEDLINE | ID: mdl-38488258

ABSTRACT

PURPOSE: The aim of this study was to investigate the distribution of coronal plane alignment of the knee (CPAK) classification and functional knee phenotypes in a Chinese osteoarthritis (OA) population and to compare different lower limb alignment targets according to the distribution characteristics to find suitable total knee arthroplasty (TKA) bone cut strategies for the Chinese OA patients. METHODS: The computed tomography (CT) images were retrospectively collected and the three-dimensional (3D) models were reconstructed from 434 Chinese OA patients, including 93 males and 341 females, with a mean age of 66.4 ± 9.3 years. Femoral mechanical angle (FMA), tibial mechanical angle (TMA) and mechanical hip-knee-ankle angle (mHKA) were measured on the 3D models. Arithmetic hip-knee-ankle angle (aHKA) was calculated using FMA plus TMA, and joint line obliquity was calculated as 180 + TMA-FMA. The CPAK according to MacDessi and the functional knee phenotypes according to Hirschmann were performed. In addition, the suitable TKA bone cut strategies were explored according to the phenotypes and based on the characteristics of different alignment targets, such as mechanical alignment, anatomic alignment (AA), kinematic alignment, restricted KA (rKA) and adjusted MA (aMA). Statistical differences were determined using the independent-samples t-test or the two independent-samples Wilcoxon test, with p < 0.05 considered statistically significant. RESULTS: The Chinese OA population showed a varus alignment tendency (mHKA = 172.1° ± 7.2°), to which the TMA was a major contributor (TMA = 84.7° ± 4.4° vs. FMA = 91.3° ± 3.2°). The mHKA was on average 3.9° more varus than the aHKA. A total of 140 functional knee phenotypes were found and 45.6% were concentrated in VARFMA3°-NEUFMA0° to VARTMA3°-NEUTMA0°. More than 70% of patients had different FMA and TMA phenotypes. There were 92.9% of CPAK distributed in types I to IV, with type I accounting for 53.9%. The FMA phenotypes were less changed if the aMA and rKA were chosen, and the TMA phenotypes were less changed if the AA and rKA were chosen. CONCLUSION: Compared with the CPAK, the functional knee phenotypes were more suitable for the Chinese OA population with a wide distribution and a varus tendency, and it seemed more appropriate to choose aMA and rKA as TKA alignment targets for resection. LEVEL OF EVIDENCE: Level Ⅲ.


Subject(s)
Arthroplasty, Replacement, Knee , Imaging, Three-Dimensional , Osteoarthritis, Knee , Phenotype , Tomography, X-Ray Computed , Humans , Female , Male , Aged , Osteoarthritis, Knee/surgery , Osteoarthritis, Knee/diagnostic imaging , Middle Aged , Arthroplasty, Replacement, Knee/methods , Retrospective Studies , China , Knee Joint/diagnostic imaging , Knee Joint/surgery , Asian People , East Asian People
19.
JNCI Cancer Spectr ; 8(2)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38490263

ABSTRACT

PURPOSE: Cancer genetic risk assessment (CGRA) is recommended for women with ovarian and high-risk breast cancer. However, the underutilization of CGRA has long been documented, and cost has been a major barrier. In this randomized controlled trial, a tailored counseling and navigation (TCN) intervention significantly improved CGRA uptake at 6-month follow-up, compared with targeted print (TP) and usual care (UC). We aimed to examine the effect of removing genetic counseling costs on CGRA uptake by 12 months. METHODS: We recruited racially and geographically diverse women with breast and ovarian cancer from cancer registries in Colorado, New Jersey, and New Mexico. Participants assigned to TCN received telephone-based psychoeducation and navigation. After 6 months, the trial provided free genetic counseling to participants in all arms. RESULTS: At 12 months, more women in TCN obtained CGRA (26.6%) than those in TP (11.0%; odds ratio [OR] = 2.77, 95% confidence interval [CI] = 1.56 to 4.89) and UC (12.2%; OR = 2.46, 95% CI = 1.41 to 4.29). There were no significant differences in CGRA uptake between TP and UC. The Kaplan-Meier curve shows that the divergence of cumulative incidence slopes (TCN vs UC, TCN vs TP) appears primarily within the initial 6 months. CONCLUSION: TCN significantly increased CGRA uptake at the 12-month follow-up. Directly removing the costs of genetic counseling attenuated the effects of TCN, highlighting the critical enabling role played by cost coverage. Future policies and interventions should address multilevel cost-related barriers to expand patients' access to CGRA. TRIAL REGISTRATION: This trial was registered with the NIH clinical trial registry, clinicaltrials.gov, NCT03326713. https://clinicaltrials.gov/ct2/show/NCT03326713.


Subject(s)
Genetic Counseling , Ovarian Neoplasms , Humans , Female , Follow-Up Studies , Counseling , Ovarian Neoplasms/genetics , Risk Assessment
20.
Biomol Concepts ; 15(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38530804

ABSTRACT

Among civilization diseases, the number of individuals suffering from type 2 diabetes (T2DM) is expected to increase to more than a billion in less than 20 years, which is associated with, e.g., populational aging, poor diet, sedentary lifestyle, genetic predispositions, and immunological factors. T2DM affects many organs and is characterized by insulin resistance, high glucose levels, and adipocyte dysfunction, which are related to senescence. Although this type of cellular aging has beneficial biological functions, it can also act unfavorable since senescent adipocytes resist apoptosis, enhance cytokine secretion, downregulate cell identity genes, and acquire the senescence-associated secretory phenotype that renders a more oxidative environment. Opposing T2DM is possible via a wide variety of senotherapies, including senolytics and senomorphics; nevertheless, further research is advised to expand therapeutic possibilities and benefits. Consequences that ought to be deeply researched include secretory phenotype, chronic inflammation, increasing insulin resistance, as well as impairment of adipogenesis and functioning of adipocyte cells. Herein, despite reviewing T2DM and fat tissue senescence, we summarized the latest adipocyte-related anti-diabetes solutions and suggested further research directions.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin Resistance/genetics , Adipocytes , Cellular Senescence/genetics , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...