Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Immunol ; 109: 51-57, 2019 05.
Article in English | MEDLINE | ID: mdl-30852246

ABSTRACT

BACKGROUND: Asthma is a chronic disease involving inflamed airways, which were previously demonstrated, can be modulated by the mesenchymal stem cells derived from induced pluripotent stem cells (iPSC-MSCs). However, the long-term effects of iPSC-MSCs in inflamed airways are still unidentified. This study investigated the long-term effects and potential mechanisms involved in the immunomodulatory effects of iPSC-MSCs in the chronic mouse asthma model. METHODS: Both human iPSC-MSCs and bone marrow (BM)-MSCs were transplanted into the long-term ovalbumin-induced mice before sensitization phase or during the challenge phase. Airway hyper-respnsiveness measurement, immunohistochemistry and ELISA were employed to assess the effects of MSCs. In addition, Smad2/3 levels were assessed by western blot analysis to investigate the possible mechanism involved. RESULTS: The systemic administration of human iPSC-MSCs before the challenge protected the mice from the characters of the chronic allergic airway inflammation, in particular improving the airway remodeling and preventing fibrosis. In addition, the TGF-ß1/Smad pathway was identified involved in the immunomodulatory effects of iPSC-MSCs on chronic allergic airway inflammation. CONCLUSIONS: The study demonstrated that iPSC-MSCs are capable of preventing chronic allergic airway inflammation over a prolonged period, which further proved the iPSC-MSC therapeutic potential for allergic airway inflammation in a clinical scenario.


Subject(s)
Hypersensitivity/therapy , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Pneumonia/therapy , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Bronchoalveolar Lavage Fluid , Chronic Disease , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Hypersensitivity/complications , Hypersensitivity/pathology , Mice, Inbred BALB C , Ovalbumin , Pneumonia/complications , Pneumonia/pathology , Signal Transduction
2.
Cell Transplant ; 27(3): 571-583, 2018 03.
Article in English | MEDLINE | ID: mdl-29806480

ABSTRACT

Airway epithelial cell injury is a key triggering event to activate allergic airway inflammation, such as asthma. We previously reported that administration of mesenchymal stem cells (MSCs) significantly alleviated allergic inflammation in a mouse model of asthma, and the mmu-miR-21/ACVR2A axis may be involved. However, whether MSCs protect against bronchial epithelial cell injury induced by hypoxia, and the underlying mechanism, remain unknown. In our study, the human bronchial epithelial cell line BEAS-2B was induced to undergo apoptosis with a hypoxia mimic of cobalt chloride (CoCl2) damage. Treatment of MSCs derived from induced pluripotent stem cells (iPSCs) significantly decreased apoptosis of BEAS-2B cells. There was high miR-21 expression in injured BEAS-2B cells after MSC treatment. Transfection of the miR-21 mimic significantly decreased apoptosis of BEAS-2B, and transfection of a miR-21 inhibitor significantly increased apoptosis. More importantly, the protective effects of MSCs on injured BEAS-2B were reversed by transfection of the miR-21 inhibitor. Binding sites of human miR-21 were identified in the 3'UTR of human ACVR2A. We further determined that CoCl2 stimulation increased ACVR2A expression at both the mRNA and protein levels. Moreover, transfection of the miR-21 mimic further up-regulated ACVR2A expression induced by CoCl2, whereas transfection of the miR-21 inhibitor down-regulated ACVR2A expression. In addition, MSCs increased ACVR2A expression in BEAS-2B cells; however, this effect was reversed after transfection of the miR-21 inhibitor. Our data suggested that MSCs protect bronchial epithelial cells from hypoxic injury via miR-21, which may represent an important target. These findings suggest the potentially wide application of MSCs for epithelial cell injury during hypoxia.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Apoptosis/genetics , Apoptosis/physiology , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line , Humans , MicroRNAs/genetics , Signal Transduction/genetics , Signal Transduction/physiology
3.
Stem Cell Res Ther ; 9(1): 147, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29793557

ABSTRACT

BACKGROUND: Human induced pluripotent stem cells-derived mesenchymal stem cells (iPSC-MSCs) have been shown to be effective in Type 2 helper T cells (Th2)-dominant eosinophilic allergic airway inflammation. However, the role of iPSC-MSCs in Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation remains poorly studied. Therefore, this study was to explore the effects of iPSC-MSCs on an experimental mouse model of steroid-resistant neutrophilic airway inflammation and further determine the underlying mechanisms. METHODS: A mouse model of neutrophilic airway inflammation was established using ovalbumin (OVA) and lipopolysaccharide (LPS). Human iPSC-MSCs were systemically administered, and the lungs or bronchoalveolar lavage fluids (BALF) were collected at 4 h and 48 h post-challenge. The pathology and inflammatory cell infiltration, the T helper cells, T helper cells-associated cytokines, nuclear transcription factors and possible signaling pathways were evaluated. Human CD4+ T cells were polarized to T helper cells and the effects of iPSC-MSCs on the differentiation of T helper cells were determined. RESULTS: We successfully induced the mouse model of Th17 dominant neutrophilic airway inflammation. Human iPSC-MSCs but not dexamethasone significantly prevented the neutrophilic airway inflammation and decreased the levels of Th17 cells, IL-17A and p-STAT3. The mRNA levels of Gata3 and RORγt were also decreased with the treatment of iPSC-MSCs. We further confirmed the suppressive effects of iPSC-MSCs on the differentiation of human T helper cells. CONCLUSIONS: iPSC-MSCs showed therapeutic potentials in neutrophilic airway inflammation through the regulation on Th17 cells, suggesting that the iPSC-MSCs could be applied in the therapy for the asthma patients with steroid-resistant neutrophilic airway inflammation.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL/genetics , Neutrophils/metabolism , Th17 Cells/metabolism , Animals , Female , Humans , Inflammation , Mice
4.
Mol Immunol ; 95: 47-55, 2018 03.
Article in English | MEDLINE | ID: mdl-29407576

ABSTRACT

BACKGROUND: Asthma is affecting more than 300 million people worldwide, which represents the most common chronic disease among children. We previously found that mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) modulated the immune response on Th2-mediated asthma in vivo and in vitro. This study further evaluated the immunomodulatory effects of MSCs from human embryonic stem cells (hESCs) on asthma. METHODS: Multipotent hESC-MSCs were obtained using a feeder-free method. The hESC-MSCs were analysed for the expression of stem cell surface markers by flow cytometry, their differentiation potentials were analysed using in vitro trilineage differentiation methods hESC-MSCs were transplanted into the murine model with ovalbumin (OVA)-induced airway allergic inflammation. The expression levels of allergic related genes were measured by the mRNA PCR arrays. RESULTS: The hESC-MSCs expressed classical MSC markers and held the capability of differentiation into multiple mesoderm-type cell lineages. hESC-MSCs were able to suppress allergic inflammation by modulating Th2 cells and eosinophils in the mice, and reversed the reduction of regulatory T cells. By using PCR array, 5 mRNAs- chemokine (C-C motif) ligand 11 (Ccl11), Ccl24, interleukin13 (Il13), Il33 and eosinophil-associated, ribonuclease A family, member 11 (Ear11) were identified the most relevant in murine airway allergic inflammation and hESC-MSCs treatment. CONCLUSIONS: The therapeutic effects of hESC-MSCs were identified in the murine model of airway allergic inflammation with key mRNAs involved. This study will provide a better understanding regarding the mechanisms underlying hESC-MSCs therapeutic application in airway allergic inflammation.


Subject(s)
Asthma/genetics , Asthma/therapy , Cell Differentiation , Human Embryonic Stem Cells/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Animals , Asthma/pathology , Cells, Cultured , Disease Models, Animal , Female , Human Embryonic Stem Cells/transplantation , Humans , Mice , Mice, Inbred BALB C , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...