Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 27(8): 3479-3492, 2022 08.
Article in English | MEDLINE | ID: mdl-35665767

ABSTRACT

Acetylcholine is a neuromodulator critical for learning and memory. The cholinesterase inhibitor donepezil increases brain acetylcholine levels and improves Alzheimer's disease (AD)-associated learning disabilities. Acetylcholine activates striatal/nucleus accumbens dopamine receptor D2-expressing medium spiny neurons (D2R-MSNs), which regulate aversive learning through muscarinic receptor M1 (M1R). However, how acetylcholine stimulates learning beyond M1Rs remains unresolved. Here, we found that acetylcholine stimulated protein kinase C (PKC) in mouse striatal/nucleus accumbens. Our original kinase-oriented phosphoproteomic analysis revealed 116 PKC substrate candidates, including Rac1 activator ß-PIX. Acetylcholine induced ß-PIX phosphorylation and activation, thereby stimulating Rac1 effector p21-activated kinase (PAK). Aversive stimulus activated the M1R-PKC-PAK pathway in mouse D2R-MSNs. D2R-MSN-specific expression of PAK mutants by the Cre-Flex system regulated dendritic spine structural plasticity and aversive learning. Donepezil induced PAK activation in both accumbal D2R-MSNs and in the CA1 region of the hippocampus and enhanced D2R-MSN-mediated aversive learning. These findings demonstrate that acetylcholine stimulates M1R-PKC-ß-PIX-Rac1-PAK signaling in D2R-MSNs for aversive learning and imply the cascade's therapeutic potential for AD as aversive learning is used to preliminarily screen AD drugs.


Subject(s)
Acetylcholine , p21-Activated Kinases , Animals , Mice , Protein Kinase C , Donepezil/pharmacology , Brain
2.
J Neurochem ; 160(3): 325-341, 2022 02.
Article in English | MEDLINE | ID: mdl-34878647

ABSTRACT

The nucleus accumbens (NAc) plays critical roles in emotional behaviors, including aversive learning. Aversive stimuli such as an electric foot shock increase acetylcholine (ACh) in the NAc, and muscarinic signaling appears to increase neuronal excitability and aversive learning. Muscarinic signaling inhibits the voltage-dependent potassium KCNQ current which regulates neuronal excitability, but the regulatory mechanism has not been fully elucidated. Phosphorylation of KCNQ2 at threonine 217 (T217) and its inhibitory effect on channel activity were predicted. However, whether and how muscarinic signaling phosphorylates KCNQ2 in vivo remains unclear. Here, we found that PKC directly phosphorylated KCNQ2 at T217 in vitro. Carbachol and a muscarinic M1 receptor (M1R) agonist facilitated KCNQ2 phosphorylation at T217 in NAc/striatum slices in a PKC-dependent manner. Systemic administration of the cholinesterase inhibitor donepezil, which is commonly used to treat dementia, and electric foot shock to mice induced the phosphorylation of KCNQ2 at T217 in the NAc, whereas phosphorylation was suppressed by an M1R antagonist. Conditional deletion of Kcnq2 in the NAc enhanced electric foot shock induced aversive learning. Our findings indicate that muscarinic signaling induces the phosphorylation of KCNQ2 at T217 via PKC activation for aversive learning.


Subject(s)
Avoidance Learning/physiology , KCNQ2 Potassium Channel/metabolism , Nerve Tissue Proteins/metabolism , Nucleus Accumbens/metabolism , Parasympathetic Nervous System/physiology , Protein Kinase C/metabolism , Receptors, Muscarinic/physiology , Animals , Carbachol/pharmacology , Cholinesterase Inhibitors/pharmacology , Donepezil/pharmacology , KCNQ2 Potassium Channel/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Nerve Tissue Proteins/genetics , Phosphorylation , Receptor, Muscarinic M2/drug effects
3.
Neurochem Int ; 143: 104935, 2021 02.
Article in English | MEDLINE | ID: mdl-33301817

ABSTRACT

The nucleus accumbens (NAc) plays a crucial role in various mental activities, including positive and negative reinforcement. We previously hypothesized that a balance between dopamine (DA) and adenosine signals regulates the PKA-Rap1 pathway in medium spiny neurons expressing DA D1 receptors (D1R-MSNs) or D2 receptors (D2R-MSNs) and demonstrated that the PKA-Rap1 pathway in D1R-MSNs is responsible for positive reinforcement. Here, we show the role of the PKA-Rap1 pathway in accumbal D2R-MSNs in negative reinforcement. Mice were exposed to electric foot shock as an aversive stimulus. We monitored the phosphorylation level of Rap1gap S563, which leads to the activation of Rap1. Electric foot shocks increased the phosphorylation level of GluN1 S897 and Rap1gap S563 in the NAc. The aversive stimulus-evoked phosphorylation of Rap1gap S563 was detected in accumbal D2R-MSNs and inhibited by pretreatment with adenosine A2a receptor (A2aR) antagonist. A2aR antagonist-treated mice showed impaired aversive memory in passive avoidance tests. AAV-mediated inhibition of PKA, Rap1, or MEK1 in accumbal D2R-MSNs impaired aversive memory in passive avoidance tests, whereas activation of this pathway potentiated aversive memory. Optogenetic inactivation of mesolimbic DAergic neurons induced place aversion in real-time place aversion tests. Aversive response was attenuated by inhibition of PKA-Rap1 signaling in accumbal D2R-MSNs. These results suggested that accumbal D2R-MSNs regulate aversive behaviors through the A2aR-PKA-Rap1-MEK pathway. Our findings provide a novel molecular mechanism for regulating negative reinforcement.


Subject(s)
Avoidance Learning/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Neurons/metabolism , Nucleus Accumbens/metabolism , Receptors, Dopamine D2/metabolism , rap1 GTP-Binding Proteins/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Avoidance Learning/drug effects , Electric Stimulation/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Nucleus Accumbens/drug effects , Purines/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
4.
Nucleic Acids Res ; 45(10): 6011-6022, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28334864

ABSTRACT

Frameshifting is an essential process that regulates protein synthesis in many viruses. The ribosome may slip backward when encountering a frameshift motif on the messenger RNA, which usually contains a pseudoknot structure involving tertiary base pair interactions. Due to the lack of detailed molecular explanations, previous studies investigating which features of the pseudoknot are important to stimulate frameshifting have presented diverse conclusions. Here we constructed a bimolecular pseudoknot to dissect the interior tertiary base pairs and used single-molecule approaches to assess the structure targeted by ribosomes. We found that the first ribosome target stem was resistant to unwinding when the neighboring loop was confined along the stem; such constrained conformation was dependent on the presence of consecutive adenosines in this loop. Mutations that disrupted the distal base triples abolished all remaining tertiary base pairs. Changes in frameshifting efficiency correlated with the stem unwinding resistance. Our results demonstrate that various tertiary base pairs are coordinated inside a highly efficient frameshift-stimulating RNA pseudoknot and suggest a mechanism by which mechanical resistance of the pseudoknot may persistently act on translocating ribosomes.


Subject(s)
Base Pairing , Frameshifting, Ribosomal/physiology , Nucleic Acid Conformation , RNA, Messenger/chemistry , Ribosomes/metabolism , Fluorescence Resonance Energy Transfer , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oligoribonucleotides/chemical synthesis , Oligoribonucleotides/chemistry , Optical Tweezers , RNA, Messenger/genetics , Reading Frames , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...