Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Colloids Surf B Biointerfaces ; 238: 113890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608462

ABSTRACT

A promising therapeutic strategy in cancer treatment merges photodynamic therapy (PDT) induced apoptosis with ferroptosis, a form of programmed cell death governed by iron-dependent lipid peroxidation. Given the pivotal role of mitochondria in ferroptosis, the development of photosensitizers that specifically provoke mitochondrial dysfunction and consequentially trigger ferroptosis via PDT is of significant interest. To this end, we have designed and synthesized a novel nanoparticle, termed FECTPN, tailored to address this requisite. FECTPN harnesses a trifecta of critical attributes: precision mitochondria targeting, photoactivation capability, pH-responsive drug release, and synergistic apoptosis-ferroptosis antitumor treatment. This nanoparticle was formulated by conjugating an asymmetric silicon phthalocyanine, Chol-SiPc-TPP, with the ferroptosis inducer Erastin onto a ferritin. The Chol-SiPc-TPP is a chemically crafted entity featuring cholesteryl (Chol) and triphenylphosphine (TPP) functionalities bonded axially to the silicon phthalocyanine, enhancing mitochondrial affinity and leading to effective PDT and subsequent apoptosis of cells. Upon cellular uptake, FECTPN preferentially localizes to mitochondria, facilitated by Chol-SiPc-TPP's targeting mechanics. Photoactivation induces the synchronized release of Chol-SiPc-TPP and Erastin in the mitochondria's alkaline domain, driving the escalation of both ROSs and lipid peroxidation. These processes culminate in elevated antitumor activity compared to the singular application of Chol-SiPc-TPP-mediated PDT. A notable observation is the pronounced enhancement in glutathione peroxidase-4 (GPX4) expression within MCF-7 cells treated with FECTPN and subjected to light exposure, reflecting intensified oxidative stress. This study offers compelling evidence that FECTPN can effectively induce ferroptosis and reinforces the paradigm of a synergistic apoptosis-ferroptosis pathway in cancer therapy, proposing a novel route for augmented antitumor treatments.


Subject(s)
Antineoplastic Agents , Apoptosis , Ferroptosis , Indoles , Mitochondria , Nanoparticles , Organosilicon Compounds , Photochemotherapy , Photosensitizing Agents , Indoles/chemistry , Indoles/pharmacology , Apoptosis/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Ferroptosis/drug effects , Nanoparticles/chemistry , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Particle Size , Cell Survival/drug effects , Surface Properties
2.
Front Neurol ; 15: 1255621, 2024.
Article in English | MEDLINE | ID: mdl-38361636

ABSTRACT

Objective: The aim of this study is to investigate the clinical value of radiomics based on non-enhanced head CT in the prediction of hemorrhage transformation in acute ischemic stroke (AIS). Materials and methods: A total of 140 patients diagnosed with AIS from January 2015 to August 2022 were enrolled. Radiomic features from infarcted areas on non-enhanced CT images were extracted using ITK-SNAP. The max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) were used to select features. The radiomics signature was then constructed by multiple logistic regressions. The clinicoradiomics nomogram was constructed by combining radiomics signature and clinical characteristics. All predictive models were constructed in the training group, and these were verified in the validation group. All models were evaluated with the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results: Of the 140 patients, 59 experienced hemorrhagic transformation, while 81 remained stable. The radiomics signature was constructed by 10 radiomics features. The clinicoradiomics nomogram was constructed by combining radiomics signature and atrial fibrillation. The area under the ROC curve (AUCs) of the clinical model, radiomics signature, and clinicoradiomics nomogram for predicting hemorrhagic transformation in the training group were 0.64, 0.86, and 0.86, respectively. The AUCs of the clinical model, radiomics signature, and clinicoradiomics nomogram for predicting hemorrhagic transformation in the validation group were 0.63, 0.90, and 0.90, respectively. The DCA curves showed that the radiomics signature performed well as well as the clinicoradiomics nomogram. The DCA curve showed that the clinical application value of the radiomics signature is similar to that of the clinicoradiomics nomogram. Conclusion: The radiomics signature, constructed without incorporating clinical characteristics, can independently and effectively predict hemorrhagic transformation in AIS patients.

3.
Liver Cancer ; 13(1): 41-55, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344447

ABSTRACT

Introduction: A set of genetic mutations to classify hepatocellular carcinoma (HCC) useful to clinical studies is an unmet need. Hepatitis B virus-related HCC (HBV-HCC) harbors a unique genetic mutation, namely, the HBV integration, among other somatic endogenous gene mutations. We explored a combination of HBV DNA integrations and common somatic mutations to classify HBV-HCC by using a capture-sequencing platform. Methods: A total of 153 HBV-HCCs after surgical resection were subjected to capture sequencing to identify HBV integrations and three common somatic mutations in genomes. Three mutually exclusive mutations, HBV DNA integration into the TERT promoter, HBV DNA integration into MLL4, or TERT promoter point mutation, were identified in HBV-HCC. Results: They were used to classify HBV-HCCs into four groups: G1 with HBV-TERT integration (25.5%); G2 with HBV-MLL4 integration (10.5%); G3 with TERT promoter mutation (30.1%); and G4 without these three mutations (34.0%). Clinically, G3 has the highest male-to-female ratio, cirrhosis rate, and associated with higher early recurrence and mortality after resection, but G4 has the best outcome. Transcriptomic analysis revealed a grouping different from the published ones and G2 with an active immune profile related to immune checkpoint inhibitor response. Analysis of integrated HBV DNA provided clues for HBV genotype and variants in carcinogenesis of different HCC subgroup. This new classification was also validated in another independent cohort. Conclusion: A simple and robust genetic classification was developed to aid in understanding HBV-HCC and in harmonizing clinical studies.

4.
Biochem Biophys Res Commun ; 696: 149489, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38244313

ABSTRACT

Lung cancer has a high incidence rate and requires more effective treatment strategies and drug options for clinical patients. EGFR is a common genetic alteration event in lung cancer that affects patient survival and drug strategy. Our study discovered aberrant aldolase A (ALDOA) expression and dysfunction in lung cancer patients with EGFR mutations. In addition to investigating relevant metabolic processes like glucose uptake, lactate production, and ATPase activity, we examined multi-omics profiles (transcriptomics, proteomics, and pull-down assays). It was observed that phosphodiesterase 3A (PDE3A) enzyme and ALDOA exhibit correlation, and furthermore, they impact M2 macrophage polarization through ß-catenin and downstream ID3. In addition to demonstrating the aforementioned mechanism of action, our experiments discovered that the PDE3 inhibitor trequinsin has a substantial impact on lung cancer cell lines with EGFR mutants. The trequinsin medication was found to decrease the M2 macrophage polarization status and several cancer phenotypes, in addition to transduction. These findings have potential prognostic and therapeutic applications for clinical patients with EGFR mutation and lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Fructose-Bisphosphate Aldolase/genetics , beta Catenin/genetics , beta Catenin/metabolism , Signal Transduction/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cell Line, Tumor , Mutation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Neoplasm Proteins/metabolism , Inhibitor of Differentiation Proteins/genetics
5.
Biomed J ; : 100660, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37741340

ABSTRACT

BACKGROUND: A previous phase 1 dose-escalation study in Taiwan indicated CAN008 (asunercept) with standard concurrent chemoradiotherapy (CCRT) improved progression-free survival (PFS) in newly diagnosed glioblastoma (GBM) patients. This study evaluates the efficacy of CAN008 in promoting overall survival (OS) and identifies genetic alterations associated with treatment responses. METHODS: We compared OS of 5-year follow-ups from 9 evaluable CAN008 cohort patients (6 received high-dose and 3 received low-dose) to a historical Taiwanese GBM cohort with 164 newly diagnosed patients. CAN008 treatment response-associated genetic alterations were identified by whole-exome sequencing and comparing variant differences between response groups. Associations among patient survival, tumor mutational burden (TMB), and genetic alterations were analyzed using CAN008 cohort and TCGA-GBM dataset. RESULTS: OS for high-dose CAN008 patients at 2 and 5 years was 83% and 67%, respectively, and 40.1% and 8.8% for the historical GBM cohort, respectively. Better OS was observed in the high-dose CAN008 cohort (without reaching the median survival) than the historical GBM cohort (median OS: 20 months; p=0.0103). Five high-dose CAN008 patients were divided into good and poor response groups based on their PFS. A higher variant count and TMB were observed in good response patients, whereas no significant association was observed between TMB and patient survival in the newly diagnosed TCGA-GBM dataset, suggesting TMB may modulate patient CAN008 response. CONCLUSION: CAN008 combined with standard CCRT treatment prolonged the PFS and OS of newly diagnosed GBM patients compared to standard therapy alone. Higher treatment efficacy was associated with higher TMB.

6.
Am J Cancer Res ; 13(6): 2269-2284, 2023.
Article in English | MEDLINE | ID: mdl-37424798

ABSTRACT

Liver cancer is a prevalent type of tumor worldwide. CRISPR-Cas9 technology can be utilized to identify therapeutic targets for novel therapeutic approaches. In this study, our goal was to identify key genes related to the survival of hepatocellular carcinoma (HCC) cells by analyzing the DepMap database based on CRISPR-Cas9. We screened candidate genes associated with HCC cell survival and proliferation from DepMap and identified their expression levels in HCC from the TCGA database. To develop a prognostic risk model based on these candidate genes, we performed WGCNA, functional pathway enrichment analysis, protein interaction network construction, and LASSO analysis. Our findings show that 692 genes were critical for HCC cell proliferation and survival, and among them, 571 DEGs were identified in HCC tissues. WGCNA categorized these 584 genes into three modules, and the blue module consisting of 135 genes was positively linked to the tumor stage. Using the MCODE approach in Cytoscape, we identified ten hub genes in the PPI network, and through Cox univariate analysis and Lasso analysis, we developed a prognostic model consisting of three genes (SFPQ, SSRP1, and KPNB1). Furthermore, knocking down SFPQ inhibited HCC cell proliferation, migration, and invasion. In conclusion, we identified three core genes (SFPQ, SSRP1, and KPNB1) that are essential for the proliferation and survival of HCC cells. These genes were used to develop a prognostic risk model, and knockdown of SFPQ was found to inhibit the proliferation, migration, and invasion of HCC cells.

7.
J Org Chem ; 88(14): 9946-9958, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37410072

ABSTRACT

3-O-ß-Glucuronide triterpenes are plant-derived compounds. Some of them have been used as herbal medicine and in pharmaceuticals, such as chikusetsu saponins and Quillaja saponins. However, the demand for these materials has remained largely a challenge owing to their natural scarcity and low-yielding purification process. Therefore, a chemical triterpene 3-O-glucuronidation was conducted in this study to alleviate the surging demand on natural source. Various glucuronyl imidate donors and oleanane-type triterpene acceptors were synthesized, and the relative reactivity values (RRV) and acceptor nucleophilic constants (Aka) were systematically measured to study their influence on glucuronidation yield. As a result, applying donors in higher RRV value generally improved the production of 3-O-glucuronide triterpenes. Meanwhile, a bulky pivaloyl group was an ideal 2-O-protection to provide ß-selectivity and prevented side reactions, including orthoester formation and acyl-transfer reaction. Collectively, a positive correlation was observed between reactive donors/acceptors and improved glucuronidation yields. These findings offered insights on the influence of donors' and acceptors' reactivities on 3-O-ß-glucuronide triterpenes synthesis, and this knowledge would help to access saponins of interest to address future needs.


Subject(s)
Plants, Medicinal , Saponins , Triterpenes , Triterpenes/chemistry , Glucuronides , Plants, Medicinal/chemistry , Saponins/chemistry , Plant Extracts/chemistry
8.
J Med Chem ; 66(14): 9684-9696, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37413981

ABSTRACT

Irinotecan (1), a prodrug of SN38 (2) approved by the US Food and Drug Administration for treating colorectal cancer, lacks specificity and causes many side effects. To increase the selectivity and therapeutic efficacy of this drug, we designed and synthesized conjugates of SN38 and glucose transporter inhibitors (phlorizin (5) or phloretin (6)), which could be hydrolyzed by glutathione or cathepsin to release SN38 in the tumor microenvironment, as a proof of concept. These conjugates (8, 9, and 10) displayed better antitumor efficacy with lower systemic exposure to SN38 in an orthotopic colorectal cancer mouse model compared with irinotecan at the same dosage. Further, no major adverse effects of the conjugates were observed during treatment. Biodistribution studies showed that conjugate 10 could induce higher concentrations of free SN38 in tumor tissues than irinotecan at the same dosage. Thus, the developed conjugates exhibit potential for treating colorectal cancer.


Subject(s)
Colorectal Neoplasms , Prodrugs , Mice , Animals , Irinotecan , Camptothecin/pharmacology , Camptothecin/therapeutic use , Tissue Distribution , Prodrugs/pharmacology , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
9.
J Agric Food Chem ; 71(17): 6727-6737, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37088952

ABSTRACT

Commercial sterilization is a thermal processing method commonly used in low-acid canned food products. Meanwhile, heat treatment can significantly promote advanced glycation end product (AGE) formation in foodstuffs. In this research, the validated analytical methods have been developed to quantitate both lysine- and arginine-derived AGEs and their precursors, α-dicarbonyls, in various types of commercial canned meat and seafood products. Methylglyoxal-hydroimidazolone 1 was the most abundant AGEs found in the canned food products, followed by Nε-(carboxyethyl)lysine, Nε-(carboxymethyl)lysine, and glyoxal-hydroimidazolone 1. Correlation analysis revealed that methylglyoxal and glyoxal were only positively associated with the corresponding arginine-derived AGEs, while their correlations with the corresponding lysine-derived AGEs were not significant. Importantly, we demonstrated for the first time that total sugar and carbohydrate contents might serve as the potential markers for the prediction of total AGEs in canned meats and seafoods. Altogether, this study provided a more complete view of AGEs' occurrence in commercial canned food products.


Subject(s)
Glycation End Products, Advanced , Pyruvaldehyde , Lysine , Arginine , Glyoxal , Meat , Seafood
10.
Front Cardiovasc Med ; 10: 1101765, 2023.
Article in English | MEDLINE | ID: mdl-36910524

ABSTRACT

Introduction: The primary factor for cardiovascular disease and upcoming cardiovascular events is atherosclerosis. Recently, carotid plaque texture, as observed on ultrasonography, is varied and difficult to classify with the human eye due to substantial inter-observer variability. High-resolution magnetic resonance (MR) plaque imaging offers naturally superior soft tissue contrasts to computed tomography (CT) and ultrasonography, and combining different contrast weightings may provide more useful information. Radiation freeness and operator independence are two additional benefits of M RI. However, other than preliminary research on MR texture analysis of basilar artery plaque, there is currently no information addressing MR radiomics on the carotid plaque. Methods: For the automatic segmentation of MRI scans to detect carotid plaque for stroke risk assessment, there is a need for a computer-aided autonomous framework to classify MRI scans automatically. We used to detect carotid plaque from MRI scans for stroke risk assessment pre-trained models, fine-tuned them, and adjusted hyperparameters according to our problem. Results: Our trained YOLO V3 model achieved 94.81% accuracy, RCNN achieved 92.53% accuracy, and MobileNet achieved 90.23% in identifying carotid plaque from MRI scans for stroke risk assessment. Our approach will prevent incorrect diagnoses brought on by poor image quality and personal experience. Conclusion: The evaluations in this work have demonstrated that this methodology produces acceptable results for classifying magnetic resonance imaging (MRI) data.

11.
J Phys Chem Lett ; 14(13): 3168-3173, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36961452

ABSTRACT

Metal hydrides have wide applications in energy science. A large pressure gradient propels the hydrogen atoms out. A piezovoltaic device, a pressure gradient-driven battery, can therefore be realized when the migrations of protons and electrons are separated by different conductors. Here we investigate the piezovoltaic performance of PdHx with various proton conductors as electrolytes and experimentally detect an output current of ≲40 nA and a voltage of ∼0.8 V for a 3 µg sample. We also demonstrate the escape of hydrogen atoms from a palladium lattice under an increasing pressure gradient using X-ray diffraction. The relationship between piezovoltaics (chemical process) and piezoelectricity (physical process) is like that between a chemical battery and a capacitor. Our work demonstrates the piezovoltaic application of metal hydrides and provides a new way to convert mechanical energy into electrical energy.

12.
Cell Mol Gastroenterol Hepatol ; 15(4): 921-929, 2023.
Article in English | MEDLINE | ID: mdl-36690297

ABSTRACT

Hepatitis B virus (HBV) DNA integration is an incidental event in the virus replication cycle and occurs in less than 1% of infected hepatocytes during viral infection. However, HBV DNA is present in the genome of approximately 90% of HBV-related HCCs and is the most common somatic mutation. Whole genome sequencing of liver tissues from chronic hepatitis B patients showed integration occurring at random positions in human chromosomes; however, in the genomes of HBV-related HCC patients, there are integration hotspots. Both the enrichment of the HBV-integration proportion in HCC and the emergence of integration hotspots suggested a strong positive selection of HBV-integrated hepatocytes to progress to HCC. The activation of HBV integration hotspot genes, such as telomerase (TERT) or histone methyltransferase (MLL4/KMT2B), resembles insertional mutagenesis by oncogenic animal retroviruses. These candidate oncogenic genes might shed new light on HBV-related HCC biology and become targets for new cancer therapies. Finally, the HBV integrations in individual HCC contain unique sequences at the junctions, such as virus-host chimera DNA (vh-DNA) presumably being a signature molecule for individual HCC. HBV integration may thus provide a new cell-free tumor DNA biomarker to monitor residual HCC after curative therapies or to track the development of de novo HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Hepatitis B virus/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Carcinogenesis/genetics , DNA, Viral/genetics
13.
J Neurosurg ; 138(5): 1325-1337, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36152319

ABSTRACT

OBJECTIVE: The molecular pathogenesis of malignant gliomas, characterized by diverse tumor histology with differential prognosis, remains largely unelucidated. An APOBEC3 deletion polymorphism, with a deletion in APOBEC3B, has been correlated to risk and prognosis in several cancers, but its role in glioma is unclear. The authors aimed to examine the clinical relevance of the APOBEC3 deletion polymorphism to glioma risk and survival in a glioma patient cohort in Taiwan. METHODS: The authors detected deletion genotypes in 403 glioma patients and 1365 healthy individuals in Taiwan and correlated the genotypes with glioma risk, clinicopathological factors, patient survival, and patient sex. APOBEC3 gene family expression was measured and correlated to the germline deletion. A nomogram model was constructed to predict patient survival in glioma. RESULTS: The proportion of APOBEC3B-/- and APOBEC3B+/- genotypes was higher in glioblastoma (GBM) patients than healthy individuals and correlated with higher GBM risk in males. A higher percentage of cases with APOBEC3B- was observed in male than female glioma patients. The presence of APOBEC3B-/- was correlated with better overall survival (OS) in male astrocytic glioma patients. No significant correlation of the genotypes to glioma risk and survival was observed in the female patient cohort. Lower APOBEC3B expression was observed in astrocytic glioma patients with APOBEC3B-/- and was positively correlated with better OS. A 5-factor nomogram model was constructed based on male patients with astrocytic gliomas in the study cohort and worked efficiently for predicting patient OS. CONCLUSIONS: The germline APOBEC3 deletion was associated with increased GBM risk and better OS in astrocytic glioma patients in the Taiwan male population. The APOBEC3B deletion homozygote was a potential independent prognostic factor predicting better survival in male astrocytic glioma patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Male , Female , Prognosis , Taiwan , Glioma/pathology , Polymorphism, Genetic , Glioblastoma/pathology , Cytidine Deaminase , Minor Histocompatibility Antigens , APOBEC Deaminases
15.
Food Chem X ; 16: 100515, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36519092

ABSTRACT

In thermally processed foods, several heat-induced toxicants are potentially formed due to the Maillard reaction, such as α-dicarbonyls and advanced glycation end products (AGEs). In the present work, we found that the methylglyoxal (MGO)-trapping and antiglycative activities of the herbal tea samples correlated strongly with their total phenolic and flavonoid contents. Among the tested herbal tea samples, rooibos exhibited the strongest MGO-trapping and antiglycative activities against AGEs formation. Aspalathin, orientin and isoorientin were further identified as the major bioactive compounds of rooibos that scavenged MGO to form the corresponding mono-MGO adducts. Moreover, the contents of dicarbonyls and AGEs in the cookie were remarkably reduced by fortification with rooibos. Altogether, our current findings suggested that rooibos might serve as a functional ingredient to reduce intake of dietary reactive carbonyl species (RCS) and AGEs from thermally processed foods, especially bakery products.

16.
Front Pharmacol ; 13: 981201, 2022.
Article in English | MEDLINE | ID: mdl-36386179

ABSTRACT

Background: FNDC5 belongs to the family of proteins called fibronectin type III domain-containing which carry out a variety of functions. The expression of FNDC5 is associated with the occurrence and development of tumors. However, the role of FNDC5 in gastric cancer remains relatively unknown. Methods: In the research, the expression of FNDC5 and its value for the prognosis of gastric cancer patients were observed with the TCGA database and GEO datasets of gastric cancer patients. The role of FNDC5 in the regulation of gastric cancer cells proliferation, invasion, and migration was determined. WGCNA and Enrichment analysis was performed on genes co-expressed with FNDC5 to identify potential FNDC5-related signaling pathways. Meanwhile, the LASSO Cox regression analysis based on FNDC5-related genes develops a risk score to predict the survival of gastric cancer patients. Results: The expression of FNDC5 was decreased in gastric cancer tissues compared to normal gastric tissues. However, survival analysis indicated that lower FNDC5 mRNA levels were associated with better overall survival and disease-free survival in gastric cancer patients. Meanwhile, a significant negative correlation was found between FNDC5 and the abundance of CD4+ memory T cells in gastric cancer. In vitro overexpression of FNDC5 inhibits the migration and invasion of gastric cancer cells, without affecting proliferation. Finally, A two-gene risk score module based on FNDC5 co-expressed gene was built to predict the overall clinical ending of patients. Conclusion: FNDC5 is low expressed in gastric cancer and low FNDC5 predicts a better prognosis. The better prognosis of low FNDC5 expression may be attributed to the increased number of CD4+ memory activated T-cell infiltration in tumors, but the exact mechanism of the effect needs to be further explored. Overexpressing FNDC5 inhibits the invasion and migration of gastric cancer but does not affect proliferation. At last, we constructed a clinical risk score model composed of two FNDC5-related genes, and this model may help lay the foundation for further in-depth research on the individualized treatment of gastric cancer patients.

17.
Biology (Basel) ; 11(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36290392

ABSTRACT

Gastric cancer (GC) is a common upper gastrointestinal tumor. Death-associated protein kinase (DAPK1) was found to participate in the development of various malignant tumors. However, there are few reports on DAPK1 in gastric cancer. In this study, the TCGA and GEO datasets were used to explore the expression and role of DAPK1 in gastric cancer. The functions of DAPK1 in gastric cancer were determined by proliferation, migration and invasion assays. In addition, genes co-expressed with DAPK1 in gastric cancer were estimated through the WGCNA and correlation analysis. A DAPK1-related gene prognostic model was constructed using the Cox regression and lasso analyses. The expression of DAPK1 was significantly up-regulated in gastric cancer tissues. Kaplan-Meier analysis showed that low expression of DAPK1 was a favorable prognostic factor of overall survival and disease-free survival for gastric cancer patients. Functional experiments demonstrated that DAPK1 can promote the migration and invasion of gastric cancer cells. WGCNA, correlation analysis, Cox regression, and lasso analyses were applied to construct the DAPK1-related prognostic model. The prognostic value of this prognostic model of DAPK1-related genes was further successfully validated in an independent database. Our results indicated that DAPK1 can promote gastric cancer cell migration and invasion and established four DAPK1-related signature genes for gastric cancer that could independently predict the survival of GC patients.

18.
Front Oncol ; 12: 934128, 2022.
Article in English | MEDLINE | ID: mdl-35992780

ABSTRACT

Background: Renal cell carcinoma (RCC) is the seventh most common cancer in humans, of which clear cell renal cell carcinoma (ccRCC) accounts for the majority. Recently, although there have been significant breakthroughs in the treatment of ccRCC, the prognosis of targeted therapy is still poor. Leukemia inhibitory factor (LIF) is a pleiotropic protein, which is overexpressed in many cancers and plays a carcinogenic role. In this study, we explored the expression and potential role of LIF in ccRCC. Methods: The expression levels and prognostic effects of the LIF gene in ccRCC were detected using TCGA, GEO, ICGC, and ArrayExpress databases. The function of LIF in ccRCC was investigated using a series of cell function approaches. LIF-related genes were identified by weighted gene correlation network analysis (WGCNA). GO and KEGG analyses were performed subsequently. Cox univariate and LASSO analyses were used to develop risk signatures based on LIF-related genes, and the prognostic model was validated in the ICGC and E-MTAB-1980 databases. Then, a nomogram model was constructed for survival prediction and validation of ccRCC patients. To further explore the drug sensitivity between LIF-related genes, we also conducted a drug sensitivity analysis based on the GDSC database. Results: The mRNA and protein expression levels of LIF were significantly increased in ccRCC patients. In addition, a high expression of LIF has a poor prognostic effect in ccRCC patients. LIF knockdown can inhibit the migration and invasion of ccRCC cells. By using WGCNA, 97 LIF-related genes in ccRCC were identified. Next, a prognostic risk prediction model including eight LIF-related genes (TOB2, MEPCE, LIF, RGS2, RND3, KLF6, RRP12, and SOCS3) was developed and validated. Survival analysis and ROC curve analysis indicated that the eight LIF-related-gene predictive model had good performance in evaluating patients' prognosis in different subgroups of ccRCC. Conclusion: Our study revealed that LIF plays a carcinogenic role in ccRCC. In addition, we firstly integrated multiple LIF-related genes to set up a risk-predictive model. The model could accurately predict the prognosis of ccRCC, which offers clinical implications for risk stratification, drug screening, and therapeutic decision.

19.
Front Mol Biosci ; 9: 813428, 2022.
Article in English | MEDLINE | ID: mdl-35211510

ABSTRACT

Background: The genome-wide CRISPR-cas9 dropout screening has emerged as an outstanding approach for characterization of driver genes of tumor growth. The present study aims to investigate core genes related to clear cell renal cell carcinoma (ccRCC) cell viability by analyzing the CRISPR-cas9 screening database DepMap, which may provide a novel target in ccRCC therapy. Methods: Candidate genes related to ccRCC cell viability by CRISPR-cas9 screening from DepMap and genes differentially expressed between ccRCC tissues and normal tissues from TCGA were overlapped. Weighted gene coexpression network analysis, pathway enrichment analysis, and protein-protein interaction network analysis were applied for the overlapped genes. The least absolute shrinkage and selection operator (LASSO) regression was used to construct a signature to predict the overall survival (OS) of ccRCC patients and validated in the International Cancer Genome Consortium (ICGC) and E-MTAB-1980 database. Core protein expression was determined using immunohistochemistry in 40 cases of ccRCC patients. Results: A total of 485 essential genes in the DepMap database were identified and overlapped with differentially expressed genes in the TCGA database, which were enriched in the cell cycle pathway. A total of four genes, including UBE2I, NCAPG, NUP93, and TOP2A, were included in the gene signature based on LASSO regression. The high-risk score of ccRCC patients showed worse OS compared with these low-risk patients in the ICGC and E-MTAB-1980 validation cohort. UBE2I was screened out as a key gene. The immunohistochemistry indicated UBE2I protein was highly expressed in ccRCC tissues, and a high-level nuclear translocation of UBE2I occurs in ccRCC. Based on the area under the curve (AUC) values, nuclear UBE2I had the best diagnostic power (AUC = 1). Meanwhile, the knockdown of UBE2I can inhibit the proliferation of ccRCC cells. Conclusion: UBE2I, identified by CRISPR-cas9 screening, was a core gene-regulating ccRCC cell viability, which accumulated in the nucleus and acted as a potential novel promising diagnostic biomarker for ccRCC patients. Blocking the nuclear translocation of UBE2I may have potential therapeutic value with ccRCC patients.

20.
Hepatology ; 76(1): 207-219, 2022 07.
Article in English | MEDLINE | ID: mdl-34957587

ABSTRACT

BACKGROUND AND AIMS: Hepatitis B immunoglobulin (HBIG) has been routinely applied in the liver transplantation setting to block HBV reinfection of grafts. However, new monoclonal anti-HBV surface antibodies have been developed to replace HBIG. The epitopes of such monoclonal antibodies may affect the emergence of escape variants and deserve study. APPROACH AND RESULTS: The conformational epitope of sLenvervimab, a surrogate form of Lenvervimab, which is a monoclonal anti-HBsAg antibody currently under phase 3 trial, was investigated by selecting escape mutants from a human liver chimeric mouse. HBV-infected chimeric mice treated with sLenvervimab monotherapy showed an initial decline in circulating HBsAg levels, followed by a quick rebound in 1 month. Sequencing of circulating or liver HBV DNA revealed emerging variants, with replacement of amino acid E164 or T140, two residues widely separated in HBsAg. E164 HBV variants strongly resisted sLenvervimab neutralization in cell culture infection, and the T140 variant moderately resisted sLenvervimab neutralization. Natural HBV variants with amino-acid replacements adjacent to E164 were constructed and examined for sLenvervimab neutralization effects. Variants with K160 replacement also resisted neutralization. These data revealed the conformational epitope of sLenvervimab. CONCLUSIONS: Selection of antibody-escape HBV variants in human chimeric mice works efficiently. Analysis of such emerging variants helps to identify anchor amino-acid residues of the conformational epitope that are difficult to discover by conventional approaches.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B , Animals , Antibodies, Monoclonal , Epitopes , Hepatitis B/drug therapy , Hepatitis B Antibodies , Hepatitis B virus/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...