Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791440

ABSTRACT

The pil gene cluster for Type IV pilus (Tfp) biosynthesis is commonly present and highly conserved in Streptococcus sanguinis. Nevertheless, Tfp-mediated twitching motility is less common among strains, and the factors determining twitching activity are not fully understood. Here, we analyzed the functions of three major pilin proteins (PilA1, PilA2, and PilA3) in the assembly and activity of Tfp in motile S. sanguinis CGMH010. Using various recombinant pilA deletion strains, we found that Tfp composed of different PilA proteins varied morphologically and functionally. Among the three PilA proteins, PilA1 was most critical in the assembly of twitching-active Tfp, and recombinant strains expressing motility generated more structured biofilms under constant shearing forces compared to the non-motile recombinant strains. Although PilA1 and PilA3 shared 94% identity, PilA3 could not compensate for the loss of PilA1, suggesting that the nature of PilA proteins plays an essential role in twitching activity. The single deletion of individual pilA genes had little effect on the invasion of host endothelia by S. sanguinis CGMH010. In contrast, the deletion of all three pilA genes or pilT, encoding the retraction ATPase, abolished Tfp-mediated invasion. Tfp- and PilT-dependent invasion were also detected in the non-motile S. sanguinis SK36, and thus, the retraction of Tfp, but not active twitching, was found to be essential for invasion.


Subject(s)
Biofilms , Fimbriae Proteins , Fimbriae, Bacterial , Streptococcus sanguis , Fimbriae Proteins/metabolism , Fimbriae Proteins/genetics , Streptococcus sanguis/metabolism , Streptococcus sanguis/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Biofilms/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
Ecotoxicol Environ Saf ; 276: 116307, 2024 May.
Article in English | MEDLINE | ID: mdl-38593497

ABSTRACT

In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.


Subject(s)
Hydrogen Sulfide , Plants , Signal Transduction , Thiocyanates , Hydrogen Sulfide/metabolism , Thiocyanates/metabolism , Plants/metabolism , Gasotransmitters/metabolism , Chloroplasts/metabolism , Inactivation, Metabolic
3.
Int J Biol Macromol ; 253(Pt 1): 126655, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37660866

ABSTRACT

The entrance of chromium (Cr) into the agricultural system would exert a negative influence on the carbon/nitrogen metabolism (CNM) of plants. In this study, we investigated the role of exogenous proline-mediated Ca2+-dependent signaling in the regulation of CNM in rice subjected to Cr(VI) stress, with emphasis on the involvement of nitrate reductase (NR) and sucrose phosphate synthase (SPS). Results demonstrated that proline effectively mitigated the growth inhibition of rice imposed by Cr(VI) stress, which is achieved by a reduction in cytoplasmic Ca and Cr content and the activation of the downstream Ca2+-dependent signaling pathway. Additionally, proline displayed a positive effect in modulating the expression and activities of NR and SPS under Cr(VI) stress, which are attributed to the cross-regulation between calcium-dependent protein kinases (CDPKs) and 14-3-3 proteins (14-3-3s). Consequently, nitrogen use efficiency and sucrose content in rice under Cr(VI) + proline treatments were higher than Cr(VI) treatments. Gene expression variation factors underscored that the regulation of proline on NR is crucial to the Ca2+-dependent signaling pathway, initiated by the interaction between CDPKs and 14-3-3s in rice plants during Cr(VI) stress. These results reveal that proline interacts with Ca2+-dependent signaling pathways to enhance Cr tolerance in rice by regulating NR and SPS.


Subject(s)
Oryza , Oryza/metabolism , Nitrate Reductase/metabolism , Nitrate Reductase/pharmacology , Proline/metabolism , Chromium/pharmacology , Signal Transduction , Nitrogen/metabolism
4.
Front Plant Sci ; 14: 1086098, 2023.
Article in English | MEDLINE | ID: mdl-36909427

ABSTRACT

Thiocyanate (SCN-) can find its way into cultivated fields, which might hamper the harmony in carbon and nitrogen metabolism (CNM) of plants, ebbing their quality and productivity. In the current study, we investigated the role of the exogenous application of 2-oxoglutarate (2-OG) in maintaining homeostasis of CNM in rice seedlings under SCN- stress. Results showed that SCN- exposure significantly repressed the gene expression and activities of CNM-related enzymes (e.g., phosphoenolpyruvate carboxylase, NADP-dependent isocitrate dehydrogenases, and isocitrate dehydrogenases) in rice seedlings, thereby reducing their relative growth rate (RGR). Exogenous application of 2-OG effectively mitigated the toxic effects of SCN- on rice seedlings, judged by the aforementioned parameters. The co-expression network analysis showed that genes activated in CNM pathways were categorized into four modules (Modules 1-4). In order to identify the key module activated in CNM in rice seedlings exposed to SCN-, the results from real-time quantitative PCR (RT-qPCR) tests were used to calculate the possibility of the occurrence of genes grouped in four different modules. Notably, Module 3 showed the highest occurrence probability, which is mainly related to N metabolism and 2-OG synthesis. We can conclude that exogenous application of 2-OG can modify the imbalance of CNM caused by SCN- exposure through regulating N metabolism and 2-OG synthesis in rice seedlings.

5.
Environ Sci Pollut Res Int ; 30(10): 25851-25862, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36346523

ABSTRACT

Hydrogen sulfide (H2S) and nitric oxide (NO) play a well-organized protective mechanism in coping with oxidative stress induced by toxic metals. However, the comparative effects of H2S and NO on enzymatic and non-enzymatic antioxidants in plants under Cr(III) stress have not been defined. In this study, we mathematically evaluate the importance of sodium hydrosulfide (NaHS) and sodium nitroprusside (SNP) on these two antioxidant systems in rice seedlings under Cr(III) stress. The results displayed that the optimal dose of NaHS and SNP was 100 µM and 75 µM, respectively, in rice tissues under Cr(III) stress, judging by the reactive oxygen species (ROS) levels in rice tissues. When rice seedlings were exposed to Cr(III) at concentrations of 3.57, 7.24, 26.52 mg Cr/l, Cr-induced ROS accumulation had a significant (p < 0.05) effect on the lipid peroxidation of cell membrane in rice tissues, and decreased the response of SOD, CAT, Pro, GSH, and AsA in rice tissues. Application of exogenous NaHS and SNP effectively (p < 0.05) alleviated the toxic effects of Cr(III) in rice seedlings by activating different antioxidants. A novel physiological response model suggested that the regulatory effect of NaHS and SNP on non-enzymatic antioxidants was stronger than that of enzymatic antioxidants. Moreover, NaHS-mediated response intensity of both enzymatic and non-enzymatic antioxidants was greater than that of SNP, suggesting the importance of utilizing NaHS over SNP as antioxidant regulators during detoxification of Cr(III) in rice seedlings.


Subject(s)
Hydrogen Sulfide , Oryza , Antioxidants/metabolism , Seedlings , Nitroprusside/pharmacology , Nitroprusside/metabolism , Oryza/metabolism , Reactive Oxygen Species/metabolism , Chromium/metabolism , Oxidative Stress , Hydrogen Sulfide/metabolism , Nitric Oxide/metabolism
6.
Toxics ; 12(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38276717

ABSTRACT

Chromium (Cr) toxicity exerts a detrimental effect on various physiological, biochemical, and molecular attributes of plants including the structure and functions of cell walls. On the other hand, the exogenous application of proline (Pro) is a beneficial strategy to overcome Cr toxicity. Therefore, it is a novel strategy to find the key genes associated with cell wall composition in rice under trivalent Cr with/without Pro application. A total of 203 genes were activated in the four cell wall biosynthesis pathways under chromium stress, namely cellulose (60), hemicellulose (57), lignin (35), and pectin (51). Based on the expression abundance of microarrays, the number of differentially expressed genes, and the expression level of genes, the lignin pathway was a crucial pathway in response to Cr treatments, followed by the cellulose pathway. Through the estimation of gene expression variation factors between 'Cr' and 'Cr+Pro' treatments, OsUGP1, OsBGLU24, OsBGLU29, OsBGLU33, OsBMY1, and OsBMY2 in the cellulose pathway; OsXTH9, OsXTH10, OsXTH16, OsGAUT3, OsGAUT19, OsGAUT28, OsXTH1, OsGAUT12, and OsGAUT21 in the hemicellulose pathway; OsPAL3, OsPAL3, OsPOX1, and OsPRX77 in the lignin pathway; and OsPME25, OsPGL27, OsPME26, OsPGL9, and OsPLL12 in the pectin pathway are the key genes involved in cell wall modification during Cr exposure with exogenous Pro application. The Pro-mediated activation of these genes could be crucial players in modifying the cell wall structure and composition of rice plants under Cr stress, which needs to be further clarified.

7.
Life (Basel) ; 12(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36362856

ABSTRACT

Cyanide (CN-) pollution in agricultural systems can affect crop production. However, no data are available to describe the full picture of the responsive metabolic mechanisms of genes with known functions related to exogenous KCN exposure. In this study, we examined the transcriptome in rice seedlings exposed to potassium cyanide (KCN) using an Agilent 4×44K rice microarray to clarify the relationship between the differentially expressed genes (DEGs) and their function classifications. The number of DEGs (up-regulated genes/down-regulated genes) was 322/626 and 640/948 in the shoots and roots of CN--treated rice seedlings, respectively. Functional predication demonstrated that a total of 534 and 837 DEGs in shoots and roots were assigned to 22 COG categories. Four common categories listed on the top five COG classifications were detected in both rice tissues: signal transduction mechanisms, carbohydrate transport and metabolism, post-translational modification, protein turnover and chaperones, and transcription. A comparison of DEGs aligned to the same COG classification demonstrated that the majority of up-regulated/down-regulated DEGs in rice tissues were significantly different, suggesting that responsive and regulatory mechanisms are tissue specific in CN--treated rice seedlings. Additionally, fifteen DEGs were aligned to three different COG categories, implying their possible multiple functions in response to KCN stress. The results presented here provide insights into the novel responsive and regulatory mechanisms of KCN-responsive genes, and will serve as useful resources for further functional dissections of the physiological significance of specific genes activated in the exogenous KCN stress response in rice plants.

8.
Appl Environ Microbiol ; 88(18): e0140322, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36094177

ABSTRACT

Type IV pili (Tfp) are known to mediate several biological activities, including surface-dependent twitching motility. Although a pil gene cluster for Tfp biosynthesis is found in all sequenced Streptococcus sanguinis strains, Tfp-mediated twitching motility is less commonly detected. Upon examining 81 clinical strains, 39 strains generated twitching zones on blood agar plates (BAP), while 27 strains displayed twitching on Todd-Hewitt (TH) agar. Although BAP appears to be more suitable for the development of twitching zones, 5 strains exhibited twitching motility only on TH agar, indicating that twitching motility is not only strain specific but also sensitive to growth media. Furthermore, different twitching phenotypes were observed in strains expressing comparable levels of pilT, encoding the retraction ATPase, suggesting that the twitching phenotype on agar plates is regulated by multiple factors. By using a PilT-null and a pilin protein-null derivative (CHW02) of twitching-active S. sanguinis CGMH010, we found that Tfp retraction was essential for biofilm stability. Further, biofilm growth was amplified in CHW02 in the absence of shearing force, indicating that S. sanguinis may utilize other ligands for biofilm formation in the absence of Tfp. Similar to SK36, Tfp from CGMH010 were required for colonization of host cells, but PilT only marginally affected adherence and only in the twitching-active strain. Taken together, the results suggest that Tfp participates in host cell adherence and that Tfp retraction facilitates biofilm stability. IMPORTANCE Although the gene clusters encoding Tfp are commonly present in Streptococcus sanguinis, not all strains express surface-dependent twitching motility on agar surfaces. Regardless of whether the Tfp could drive motility, Tfp can serve as a ligand for the colonization of host cells. Though many S. sanguinis strains lack twitching activity, motility can enhance biofilm stability in a twitching-active strain; thus, perhaps motility provides little or no advantage to the survival of bacteria within dental plaque. Rather, Tfp retraction could provide additional advantages for the bacteria to establish infections outside the oral cavity.


Subject(s)
Fimbriae Proteins , Streptococcus sanguis , Adenosine Triphosphatases/metabolism , Agar/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Ligands , Prevalence , Streptococcus sanguis/genetics , Streptococcus sanguis/metabolism
9.
Ecotoxicology ; 31(8): 1266-1275, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36121537

ABSTRACT

Chromium (Cr) stress can cause oxidative burst to plants. Application of exogenous proline (Pro) is one of the most effective approaches to improve the tolerance of plants to Cr stress. In this study, we integrated the data of gene chip with co-expression network analysis to identify the key pathways involved in the DNA repair processes in rice seedlings under Cr(VI) stress. Based on KEGG pathway analysis, 158 genes identified are activated in five different types of DNA repair pathways, namely base excision repair (BER, 20 genes), mismatch repair (MMR, 30 genes), nonhomologous end joining (NHEJ, 8 genes), nucleotide excision repair (NER, 56 genes) and homologous recombination (HR, 44 genes). Co-expression network analysis showed that genes activated in DNA repair pathways were categorized into six different modules, wherein Module 1 (45.36%), Module 2 (27.84%) and Module 3 (19.59%) carried more weight than others. Integrating the data of gene chip and co-expression network analysis indicated that coordinated actions of HR and NER pathways are mainly associated with DNA repair processes in Cr(VI)-treated rice seedlings supplied with exogenous Pro. OsCSB, OsXPG, OsBRIP1, OsRAD51C, OsRAD51A2, OsRPA, OsTOPBP1C, OsTOP3, and OsXRCC3 activated in the HR pathway had a stronger impact on repairing DNA damage induced by Cr(VI) stress in rice seedlings supplied with exogenous Pro, while OsXPB1, OsTTDA2, OsTFIIH1, OsXPC, OsRAD23, OsDSS1, and OsRPA located at the NER pathway showed more contribution to repairing DNA damage than others.


Subject(s)
Oryza , Chromium/toxicity , DNA Damage , DNA Repair , Oligonucleotide Array Sequence Analysis , Oryza/genetics , Proline , Seedlings/genetics
10.
Front Plant Sci ; 13: 953398, 2022.
Article in English | MEDLINE | ID: mdl-35982692

ABSTRACT

Toxic metal-induced overaccumulation of anthocyanin (ATH) in plants can oxidize proteins and break DNA. Herein, the role of exogenous proline (Pro) on the repression of ATH accumulation in rice seedlings during hexavalent chromium [Cr(VI)] exposure was studied. Results indicated that exogenous Pro-mediated regulation of jasmonate signals activated the MYB-bHLH-WDR complex to repress ATH accumulation in rice tissues under Cr(VI) stress. Biochemical and transcript analysis indicated that exogenous Pro promoted the synthesis of jasmonic acid (JA) and its molecularly active metabolite jasmonic acid isoleucine (JA-Ile) in rice tissues under Cr(VI) stress. Increment in the endogenous level of jasmonates positively triggered the expression of genes responsible for the JA signaling pathway and activated the MYB-bHLH-WDR complex, eventually repressing the glycosylation of anthocyanidin to form ATH in rice tissues. In conclusion, exogenous proline-mediated regulation on jasmonate signals was tissue-specific under Cr(VI) stress and a more positive effect was detected in shoots rather than roots.

11.
Plant Physiol Biochem ; 182: 36-44, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35460933

ABSTRACT

Involvement of transcription factor (TFs) in governing genes at transcription or post transcription level is known to have affirmative impact on plant physiological and morphological development, especially during environmental abuse. Application of exogenous proline (Pro) is one among the effective approaches to strengthen plant resistance against stresses. However, Pro-mediated regulative strategies of TFs in responses to the chromium (Cr) in rice plants through the gene interaction network are still not clear. In the current study, Pro-mediated interactive complexity of various TFs (i.e., MYB, NAC, WRKY, bHLH, and bZIP) under hexavalent chromium [Cr(VI)] was investigated using Agilent 4 × 44 K rice gene chip and gene interactive probability model (GIPM). Results showed that exogenous Pro had a negligible effect on Cr uptake in rice plants, while a small positive response in biomass accretion of rice seedlings was observed under Cr(VI)+Pro treatments which was to certain extend greater than single Cr(VI) treatments. Rice microarray analysis showed that Cr(VI) significantly (p < 0.05) repressed the expression of TFs in the rice roots and shoots, while the application of exogenous Pro significantly (p < 0.05) up-regulated the expression levels of some TFs in rice tissues. Mathematical modularization indicated that Pro-mediated interaction between MYB and NAC carried more weightage than other TFs in rice roots and shoots under Cr(VI) stress. Overall, our study provides convincing evidence to confirm a positive role of exogenous Pro on reducing the negative impact exerted by Cr(VI) on rice plants through regulating expression and interaction of different TFs.


Subject(s)
Oryza , Chromium/toxicity , Oryza/genetics , Oryza/metabolism , Plant Roots/metabolism , Proline/metabolism , Seedlings/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Chemosphere ; 294: 133789, 2022 May.
Article in English | MEDLINE | ID: mdl-35101430

ABSTRACT

In spite of available information demonstrating the assimilation of cyanide (CN-) by ß-cyanoalanine synthase (ß-CAS) in plants, involvement of sulfurtransferase (ST) in CN- assimilation in rice plants is still undefined. In this study, a microcosmic hydroponic system was used to investigate the involvement of ß-cyanoalanine synthase (ß-CAS) and sulfurtransferase (ST) in the CN- assimilation in rice seedlings under the exposure of potassium cyanide (KCN) in presence or absence of 1-amino-cyclopropane-1-carboxylic acid (ACC). Our results indicated that the measurable thiocyanate (SCN-) was detected in both rice roots and shoots under KCN exposure, and the abundances of ST-related transcripts were up-regulated significantly (p < 0.05), suggesting that the ST pathway is involved in CN- assimilation in the rice plants. The application of exogenous ACC significantly (p < 0.05) decreased the accumulation of CN- and SCN- in rice tissues after KCN exposures, and also up-regulated the expression of ß-CAS and ST genes and their enzymatic activities, suggesting a positive interaction between aminocyclopropane-1-carboxylate oxidase (ACO), ß-CAS and ST in rice plants during the CN- assimilation. This is the first attempt to experimentally clarify the involvement of ST in CN- assimilation in rice seedlings.


Subject(s)
Oryza , Cyanides/metabolism , Lyases , Oryza/genetics , Oryza/metabolism , Seedlings/metabolism , Sulfurtransferases/genetics , Sulfurtransferases/metabolism
13.
Environ Sci Pollut Res Int ; 29(4): 5622-5633, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34424467

ABSTRACT

Thiocyanate (SCN-) is a nitrogen-containing pollutant, which can be involved in the nitrogen (N) cycle and interferes with plant growth. The current study highlights a new insight into the N (nitrate [NO3-] and ammonium [NH4+]) utilization ways in rice seedlings under SCN- exposure to clarify the interactive effect on uptake and assimilation between these N-containing chemicals. Phenotypically, relative growth rates (RGR) of NO3--fed seedlings were significantly higher than NH4+-fed rice seedlings at the same SCN- concentration. Both N fertilizations have no significant influence on SCN- content and its assimilation in rice seedlings. However, significant accumulation of NO3- and NH4+ were detected in shoots prior to roots under SCN- stress. Enzymatic assay and mRNA analysis showed that the carbonyl sulfide (COS) pathway of SCN- degradation occurred in both roots and shoots of NO3--fed seedlings but only evident in roots of NH4+-fed seedlings. Moreover, the effect of SCN- on the activity of nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) was negligible in NO3--fed seedlings, while GOGAT activity was significantly inhibited in shoots of NH4+-fed seedlings. Nitrogen use efficiency (NUE) estimation provided positive evidence in utilizing NO3- over NH4+ as the main N source to support rice seedling growth during detoxification of exogenous SCN-. Overall, SCN- pollution has unexpectedly changed the rice preference for N source which shifted from NH4+ to NO3-, suggesting that the interactions of SCN- with different N sources in terms of uptake and assimilation in rice plants should not be overlooked, especially at the plant N nutritional level.


Subject(s)
Ammonium Compounds , Oryza , Nitrates , Nitrogen , Plant Roots , Seedlings , Thiocyanates
14.
J Agric Food Chem ; 69(38): 11185-11195, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34521195

ABSTRACT

This study highlights the roles of different N sources (N starvation [-N], nitrate [+NO3-], and ammonium [+NH4+]) in specific amino acids involved in rice proline (Pro) metabolism under hexavalent chromium [Cr(VI)] stress. In treatment with Cr(VI) - N, the content of glutamate (Glu) in shoots was comparable to that of Pro, while the content of Glu in the roots was significantly higher than that of Pro. In case of treatment with Cr(VI) + NO3-/NH4+, the content of Glu in both tissues was significantly higher than that of Pro, suggesting that the synthesis of γ-aminobutyric acid and glutathione was most likely involved. Pro synthesis in rice is mainly derived from the Glu pathway rather than the ornithine (Orn) pathway, which is strongly affected by different N sources. The genetic regulation network of Pro metabolism demonstrated a good signal for describing amino acid balance in rice under Cr(VI) stress.


Subject(s)
Oryza , Amino Acids , Chromium , Proline
15.
Chemosphere ; 284: 131389, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34323803

ABSTRACT

Various environmental contaminants can find their way to enter plant cells and disturb and/or damage the essential components of PSII repair cycle in chloroplast, thereby resulting in dysfunction of chloroplast. In the current research, a microcosm hydroponic experiment was set up to evaluate the comparative effects of sodium hydrosulfide (NaHS)- and proline (Pro)-mediated functional repairing of chloroplast in rice plants under SCN- stress. Our results displayed that when exposed to environmental realistic SCN- concentrations (24-300 mg L-1), foist significant (p < 0.05) gene-dose repercussion on the pathways of photosynthetic reactions and energy metabolism in rice shoots, and a downturn in the level of total soluble starch, sugar, and chlorophyll. Sodium hydrosulfide application effectively mitigated (p < 0.05) the toxic effects of SCN- in rice seedlings by stimulating the processes of phosphorylation, dephosphorylation and new-synthesis of D1 protein in the PSII repair cycle, and increased the turnover of D1 protein to recover CO2 assimilation. Evidently, Pro treatment mainly enhanced (p < 0.05) the expression of magnesium chelatase (MgCh) and ribulose-1,5-bisphosphate carboxylase (Rubisco) related genes under simulated SCN- stress, suggesting that the targeted repairing site in chloroplast by Pro was different from NaHS. The outcome of the present research contributes to a better understanding at molecular level for repairing of chloroplast functional disorder by NaHS and Pro at different key nodes under SCN- stress.


Subject(s)
Oryza , Chlorophyll/metabolism , Chloroplasts/metabolism , Oryza/metabolism , Photosynthesis , Proline/metabolism , Seedlings/metabolism , Sulfides , Thiocyanates , Thioredoxins/metabolism
16.
Sci Total Environ ; 783: 146805, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33866160

ABSTRACT

Thiocyanate (SCN-) present in irrigation water can have negative effects on plant growth and crop yields. Addition of plant growth regulators (PGRs) can alleviate toxic stress to plants. In the current study, we established a grey situation decision-making model (GSDM) to integrate the data of RT-qPCR analysis for screening the optimal addition of PGRs to minimise pollution stress. The effects of PGRs (i.e., jasmonic acid [JA], indole-3-acetic acid [IAA] and sodium hydrosulfide [NaHS]) on the abundance of IAA oxidation and conjugation-related genes in rice seedlings under potassium thiocyanate (KSCN) exposure was examined. The results obtained from RT-qPCR analysis can roughly present the mitigating effects of IAA, JA, and NaHS on rice seedlings under KSCN stress. Integration of RT-qPCR analysis and GSDM further quantified the regulatory effects of PGRs. Simulation results showed that the effect of NaHS on the gene expression at KSCN exposure is apparently better than that of JA and IAA. Our study provides a new simple, efficient, and cheap approach to identify the optimal plant growth regulators under the stress of environmental pollution.


Subject(s)
Oryza , Plant Growth Regulators , Gene Expression , Oryza/genetics , Seedlings , Thiocyanates
17.
Plant Physiol Biochem ; 160: 18-26, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33453461

ABSTRACT

Plants exposed to environmental contaminants often synthesize anthocyanins (ATHs) as an approach to safeguard themselves from adverse impact. However, the overload of ATHs in plant cells can threaten their growth and development through proteins oxidization and intercalating with DNAs inside cells. In the present study, a microcosm hydroponic experiment was conducted using rice seedlings to investigate the molecular signaling pathways involved in regulating and controlling ATHs synthesis and transport exposed to thiocyanate (SCN-). Our results indicated that SCN- exposure significantly (p < 0.05) increased the expression of ATHs synthesis related genes (i.e., PAL, CHS, ANS, UFGT genes) in rice tissues, altered the activities of these ATHs synthesis related enzymes, and consequently elevated the ATHs content. However, SCN- exposure significantly decreased the expression of ATHs transport related genes (i.e., GST, ABC, MATE genes) in rice seedlings, suggesting that SCN- exposure have restrained ATHs transport from cytosol to vacuole in cells, eventually posing a significant adverse effect on cells survival. Our findings highlight on one of the plant aspects in managing the toxicity triggered by secondary metabolites under stress conditions.


Subject(s)
Anthocyanins/biosynthesis , Oryza , Plant Proteins/genetics , Thiocyanates/pharmacology , Gene Expression Regulation, Plant , Genetic Variation , Oryza/enzymology , Oryza/genetics , Seedlings/enzymology , Seedlings/genetics , Stress, Physiological
18.
Ecotoxicology ; 30(8): 1511-1520, 2021 Oct.
Article in English | MEDLINE | ID: mdl-32821975

ABSTRACT

It is evident that the plasma membrane NADPH oxidases (NOXs) play an important role in the generation of superoxide radicals (O2-•) in plants during defense responses. This study was to clarify activation of NOXs in oxidative damage in Oryza sativa during SCN- exposure, particularly in the roles of jasmonic acid (JA) and hydrogen sulfide (H2S) on transcriptional and enzymatic changes of NOXs. Results indicated that enzymatic activity of NOXs in both roots and shoots was significantly enhanced during SCN- exposure, whereas the application of JA and H2S donor (NaHS) significantly repressed NOXs activity in SCN-treated rice seedlings. Similarly, ROS analysis showed that SCN- exposure elevated the content of O2-•, hydrogen peroxide (H2O2) and malondialdehyde (MDA) in rice tissues significantly, whereas decreases in O2-• and H2O2 were detected in roots and shoots of SCN-treated rice seedlings due to application of JA and NaHS. PCR analysis revealed different expression patterns of 7 plasma membrane-localized NOX genes in rice roots and shoots against SCN- exposure, suggesting that various isogenes of NOXs might regulate and determine activity of NOXs in rice organs. In conclusion, SCN- exposure was able to trigger activation of NOXs effectively, and led to oxidative damage and lipid peroxidation; the effects of JA and NaHS on inactivation of NOXs was evident and tissue specific, which in turn modulated ROS accumulation in rice plants.


Subject(s)
Hydrogen Sulfide , Oryza , Cell Membrane , Cyclopentanes , Hydrogen Peroxide/toxicity , NADPH Oxidases/genetics , Oryza/genetics , Oxidative Stress , Oxylipins , Plant Roots , Seedlings , Thiocyanates
19.
Plant Physiol Biochem ; 158: 182-189, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33160825

ABSTRACT

Application of plant growth regulators (PGRs) is a novel strategy for allay of the adverse effects caused by biotic/abiotic stresses. However, no studies have vividly executed mathematic evaluation for the assessment of various PGRs on root phenotype traits (RPTs) against pollutants. In the present study, a microcosm hydroponic experiment was conducted to examine responses of RPTs under SCN- (0, 24, 96, and 300 mg SCN/L) stress in the presence of PGRs such as jasmonic acid (JA), indole-3-acetic acid (IAA), and sodium hydrosulfide (NaHS) in rice plants. Fuzzy synthetic evaluation was applied to determine the outcome of the effects of various PGRs on the RPTs under SCN- exposure. Root scanning results indicated that exogenous IAA and NaHS has the greater potential for improving the RPTs of rice seedlings under SCN- stress, while JA failed to uplift the RPTs in response to SCN- stress. Fuzzy synthetic evaluation indicated that in control plants (without SCN-), the effect of three PGRs applied on the RPTs is as follows: NaHS > IAA > JA. At 24 mg SCN/L, NaHS and IAA had consistent actuate in regulating RPTs of rice seedlings, while all PGRs amended have an affirmative impact on RPTs at 96 and 300 mg SCN/L. The present research highlights the utilization of contemporary mathematic method to screen the superior species of PGRs through the RPTs test of plants under pollutant belt.


Subject(s)
Oryza/drug effects , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Thiocyanates/toxicity , Indoleacetic Acids/pharmacology , Phenotype , Seedlings/drug effects
20.
mSphere ; 5(5)2020 10 14.
Article in English | MEDLINE | ID: mdl-33055259

ABSTRACT

Streptococcus parasanguinis is a dominant isolate of dental plaque and an opportunistic pathogen associated with subacute endocarditis. As the expression of collagen binding proteins (CBPs) could promote the establishment of S. parasanguinis in the host, the functions of three putative CBP-encoding loci, Spaf_0420, Spaf_1570, and Spaf_1573, were analyzed using isogenic mutant strains. It was revealed that S. parasanguinis FW213 bound effectively to fibronectin and type I collagen, but the strain's affinity for laminin and type IV collagen was quite low. By using various deletion derivatives, it was found that these three loci mediated the binding of S. parasanguinis to multiple extracellular matrix molecules, with type I collagen as the common substrate. Derivative strains with a deletion in any of the three loci expressed reduced binding to trypsin-treated swine heart valves. The deletion of these loci also reduced the viable count of S. parasanguinis bacteria within macrophages, especially the loss of Spaf_0420, but only strains with deletions in Spaf_0420 and Spaf_1570 expressed reduced virulence in the Galleria mellonella larva model. The deletion of Spaf_1570 and Spaf_1573 affected mainly the structure, but not the overall mass, of biofilm cultures in a flow cell system. Thus, CBPs are likely to be more critical for the initial colonization of S. parasanguinis on host tissues during the development of endocarditis.IMPORTANCE Bacteria generally can utilize multiple adhesins to establish themselves in the host. We found that Streptococcus parasanguinis, a dominant oral commensal and an opportunistic pathogen for subacute endocarditis, possesses at least three collagen-binding proteins that enable S. parasanguinis to successfully colonize damaged heart tissues and escape innate immune clearance. The binding specificities of these three proteins for extracellular matrix molecules differ, although all three proteins participate in biofilm formation by S. parasanguinis The "multiligand for multisubstrate" feature of these adhesins may explain the high adaptability of this microbe to different tissue sites.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Collagen/metabolism , Host-Pathogen Interactions , Streptococcus/metabolism , Adhesins, Bacterial , Animals , Bacterial Adhesion , Bacterial Proteins/genetics , Biofilms/growth & development , Carrier Proteins/genetics , Larva/microbiology , Moths/microbiology , Protein Binding , Streptococcus/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...