Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pulm Med ; 23(1): 340, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697291

ABSTRACT

OBJECTIVES: Chronic obstructive pulmonary disease (COPD) is one of the main causes of morbidity and mortality in the world. However, there are some patients who are not diagnosed early and correctly through routine methods because of inconspicuous or serious symptoms. This study aims to assess the diagnostic role of long non-coding RNA (lncRNA) in COPD. METHODS: We searched literature from electronic databases, after excluding non-COPD literature, the bibliometric analysis was performed, and VOSviewer software was used to represent the data analyzed. Literature evaluating the diagnostic test accuracy of lncRNA for COPD was eligible, and the QUADAS-2 checklist was used to evaluate the quality. The pooled sensitivity (SEN), specificity (SPE), diagnostic odds ratio (DOR), and summary receiver operating characteristic curve (sROC) were used to analyze the overall diagnostic performance. Subgroup and meta-regression analyses were performed to explore the heterogeneity, and a funnel plot was assessed for publication bias. Also, lncRNAs related to COPD were identified and explored for their potential biological function. RESULTS: An increased annual growth rate of literature on this subject from 2016 focused on COPD, humans, RNA, and lncRNA. The meta-analysis enrolled 17 literature indicated that the SEN, SPE, and DOR differentiating COPD patients from normal controls (NCs) were 0.86 (95% CI [0.80, 0.90]), 0.78 (95% CI [0.67, 0.86]), and 21.59 (95% CI [11.39, 40.91]), respectively. Meanwhile, lncRNAs had the ability to distinguish acute exacerbations of COPD (AECOPD) patients from COPD; the SEN, SPE, and DOR were 0.75 (95% CI [0.62, 0.85]), 0.81 (95% CI [0.71, 0.89]), and 13.02 (95% CI [7.76, 21.85]), respectively. The area under the sROC were calculated to be greater than 0.8 at least. Subgroup and meta-regression analysis showed that the types of specimens and dysregulated lncRNAs might affect the diagnostic accuracy. The funnel plot showed there was a certain publication bias. 41 lncRNAs related to COPD were identified and mainly located in the nucleus and cytoplasm, associated with proliferation, invasion, and prognosis. These lncRNA-binding proteins were involved in the spliceosome, Rap1 signaling pathway, MAPK signaling pathway, and so on. CONCLUSION: LncRNA suggests potential diagnostic biomarkers and therapeutic targets for COPD patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Bibliometrics , Checklist , Databases, Factual , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...