Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Clin Transl Sci ; 17(4): e13787, 2024 04.
Article in English | MEDLINE | ID: mdl-38558535

ABSTRACT

The purpose of this study was to evaluate the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of frunexian (formerly known as EP-7041 and HSK36273) injection, a small molecule inhibitor of activated coagulation factor XI (FXIa), in healthy Chinese adult volunteers. This study was a randomized, placebo- and positive-controlled, sequential, ascending-dose (0.3/0.6/1.0/1.5/2.25 mg/kg/h) study of 5-day continuous intravenous infusions of frunexian. Frunexian administration exhibited an acceptable safety profile with no bleeding events. Steady state was rapidly reached with a median time ranging from 1.02 to 1.50 h. The mean half-life ranged from 1.15 to 1.43 h. Frunexian plasma concentration at a steady state and area under the concentration-time curve exhibited dose-proportional increases. The dose-escalation study of frunexian demonstrated its progressively enhanced capacities to prolong activated partial thromboplastin time (aPTT) and inhibit FXIa activity. The correlations between PK and PD biomarkers (aPTT/baseline and FXI clotting activity/baseline) were described by the two Emax models, with the EC50 values of 8940 and 1300 ng/mL, respectively. Frunexian exhibits good safety and PK/PD properties, suggesting it is a promising candidate for anticoagulant drug.


Subject(s)
Anticoagulants , Blood Coagulation , Adult , Humans , Partial Thromboplastin Time , Healthy Volunteers , China , Double-Blind Method , Dose-Response Relationship, Drug
2.
Phys Chem Chem Phys ; 23(41): 23537-23543, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34647554

ABSTRACT

The yields of all dissociation channels of ethane dications produced by strong field double ionization were measured. It was found that the branching ratios can be controlled by varying the ellipticity of laser pulses. The CH3+ formation and H+ formation channels show a clear competition, producing the highest and lowest branching ratios at ellipticity of ∼0.6, respectively. With the help of theoretical calculations, such a control was attributed to the ellipticity dependent yields of different sequential ionization pathways.

3.
J Phys Chem Lett ; 9(10): 2539-2545, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29701980

ABSTRACT

The study into the interaction between a strong laser field and atoms/molecules has led to significant advances in developing spectroscopic tools in the attosecond time-domain and methods for controlling chemical reactions. There has been great interest in understanding the complex electronic and nuclear dynamics of molecules in strong laser fields. However, it is still a formidable challenge to fully model such dynamics. Conventional experimental tools such as photoelectron spectroscopy encounter difficulties in revealing the involved states because the electron spectra are largely dictated by the property of the laser field. Here, with strong field angular streaking technique, we measure the angle-dependent ionization yields that directly reflect the symmetry of the ionizing orbitals of methyl iodide and thus reveal the ionization/dissociation dynamics. Moreover, kinematically complete measurements of momentum vectors of all fragments in dissociative double ionization processes allow access to electron-momentum correlations that reveal correlated multielectron dynamics.

4.
Phys Rev Lett ; 119(12): 123201, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29341647

ABSTRACT

With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.

5.
Acta Pharmacol Sin ; 37(3): 415-24, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26806301

ABSTRACT

AIM: Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. METHODS: The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg · kg(-1) · d(-1), ig) for 4 weeks, their blood samples were analyzed. RESULTS: A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 µmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 µmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg(-1) · d(-1)) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg(-1) · d(-1), all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. CONCLUSION: Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major metabolite teriflunomide suppresses the expression and function of NTCP, leading to potential cholestasis.


Subject(s)
Antirheumatic Agents/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Cytochrome P-450 Enzyme System/metabolism , Isoxazoles/toxicity , Liver/drug effects , Liver/pathology , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Animals , Antirheumatic Agents/metabolism , Antirheumatic Agents/pharmacokinetics , Cells, Cultured , Chemical and Drug Induced Liver Injury/pathology , Crotonates/metabolism , Crotonates/pharmacokinetics , Crotonates/toxicity , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Female , HEK293 Cells , Humans , Hydroxybutyrates , Isoxazoles/metabolism , Isoxazoles/pharmacokinetics , Leflunomide , Liver/metabolism , Male , Mice, Inbred C57BL , Nitriles , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Rats, Sprague-Dawley , Symporters/antagonists & inhibitors , Toluidines/metabolism , Toluidines/pharmacokinetics , Toluidines/toxicity
6.
Rev Sci Instrum ; 86(9): 096110, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26429497

ABSTRACT

We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

7.
Xenobiotica ; 45(12): 1138-46, 2015.
Article in English | MEDLINE | ID: mdl-26068524

ABSTRACT

1. The purpose of this study was to investigate the mechanism of hepatic uptake of berberine. Berberine accumulation in hepatocytes was found to be highly dependent on active uptake, which could not be explained by liver organic cation transporter (OCT) alone. 2. Our studies indicated that berberine uptake was significantly suppressed by rifampicin, cyclosporine A and glycyrrhizic acid, which act as specific inhibitors of different Oatp isoforms (Oatp1a1, Oatp1a4 and Oatp1b2) in rat hepatocytes. The combination of OCT and OATP inhibitors further reduced berberine accumulation in both rat and human hepatocytes. The uptake of berberine could be increased in human HEK293-OATP1B3 but not in OATP1B1-transfected HEK 293 cells. 3. Rifampicin could reduce the berberine liver extraction ratio (ER) and double its concentration in the effluent in isolated rat livers. Further in vivo study indicated that berberine plasma exposure could be significantly increased by co-administration of the OATP inhibitor rifampicin or the substrate rosuvastatin. 4. In conclusion, this study demonstrated that both OCT and OATP contribute to the accumulation of berberine in the liver. OATPs may have important roles in berberine liver disposition and potential clinically relevant drug--drug interactions.


Subject(s)
Berberine/pharmacokinetics , Liver/metabolism , Organic Anion Transporters/metabolism , Animals , Gene Expression/drug effects , HEK293 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , In Vitro Techniques , Liver/drug effects , Male , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/genetics , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Rifampin/pharmacology , Solute Carrier Organic Anion Transporter Family Member 1B3
8.
J Chem Phys ; 141(22): 221101, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25494725

ABSTRACT

We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.

9.
Rev Sci Instrum ; 85(12): 123303, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25554285

ABSTRACT

A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

10.
J Phys Chem A ; 116(8): 1950-5, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22284048

ABSTRACT

We measured the photoelectron spectra and angular distributions of partially aligned N(2), O(2), and CO(2) in the rescattering plateau of above threshold ionization (ATI). The measured ATI electrons have relatively low collision energies (<15 eV). The photoelectron angular distributions (PAD) show clearly species and energy dependence. A simple two-center interference model was not able to consistently retrieve structural properties. We conclude that due to the interplay between the electrons and rescattering potential, the molecular structural information is obscured and cannot be extracted conveniently. However, the sensitivity of the PAD to the scattering potential in laser-induced electron diffraction promises a practical tool for studying electron-ion scattering dynamics.


Subject(s)
Carbon Dioxide/chemistry , Electrons , Lasers , Nitrogen/chemistry , Oxygen/chemistry , Photoelectron Spectroscopy
11.
J Chem Phys ; 135(23): 234311, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22191879

ABSTRACT

The photodissociation of molecules often produces atomic fragments with polarized electronic angular momentum, and the atomic alignment, for example, can provide valuable information on the dynamical pathways of chemical reactions unavailable by other means. In this work, we demonstrate for the first time that orbital polarization in chemical reactions can be measured with great sensitivity using strong field ionization by exploiting its extreme nonlinearity.

SELECTION OF CITATIONS
SEARCH DETAIL
...