Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1162406, 2023.
Article in English | MEDLINE | ID: mdl-37182147

ABSTRACT

Background: Cutaneous melanoma (CM) is an aggressive type of skin cancer. Even after standard treatment, the recurrence and malignant progression of CM were almost inevitable. The overall survival (OS) of patients with CM varied widely, making it critical for prognostic prediction. Based on the correlation between CCR6 and melanoma incidence, we aimed to investigate the prognostic role of CCR6 and its relationship with immune infiltration in CM. Methods: We obtained RNA sequencing data from The Cancer Genome Atlas (TCGA) to analyze the CM expression. Functional enrichment analyses, immune infiltration analyses, immune checkpoint analyses, and clinicopathology analyses were performed. Univariate and multivariate Cox regression analyses were used to identify independent prognostic factors. A nomogram model had been developed. Kaplan-Meier survival analysis and log-rank test were used to estimate the relationship between OS and CCR6 expression. Results: CCR6 was significantly upregulated in CM. Functional enrichment analyses revealed that CCR6 was correlated with immune response. Most immune cells and immune checkpoints were positively correlated with CCR6 expression. Kaplan-Meier analyses showed that high CCR6 expression was associated with a good outcome in CM and its subtypes. Cox regression showed that CCR6 was an independent prognostic factor in patients with CM (HR = 0.550, 95% CI = 0.332-0.912, p<0.05). Conclusions: CCR6 is considered to be a new prognostic biomarker for patients with CM, and our study provides a potential therapeutic target for CM treatment.

2.
J Transl Med ; 21(1): 153, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36841801

ABSTRACT

BACKGROUND: The interaction between the tumor-microenvironment (TME) and the cancer cells has emerged as a key player in colorectal cancer (CRC) metastasis. A small proportion of CRC cells which undergo epithelial-mesenchymal transition (EMT) facilitate the reshaping of the TME by regulating various cellular ingredients. METHODS: Immunohistochemical analysis, RNA immunoprecipitation (RIP), RNA Antisense Purification (RAP), dual luciferase assays were conducted to investigate the biological function and regulation of LINC00543 in CRC. A series in vitro and in vivo experiments were used to clarify the role of LINC00543 in CRC metastasis. RESULTS: Here we found that the long non-coding RNA LINC00543, was overexpressed in colorectal cancer tissues, which correlated with advanced TNM stage and poorer prognosis of CRC patients. The overexpression of LINC00543 promoted tumorigenesis and metastasis of CRC cells by enhancing EMT and remodeling the TME. Mechanistically, LINC00543 blocked the transport of pre-miR-506-3p across the nuclear-cytoplasmic transporter XPO5, thereby reducing the production of mature miR-506-3p, resulting in the increase in the expression of FOXQ1 and induction of EMT. In addition, upregulation of FOXQ1 induced the expression of CCL2 that accelerated the recruitment of macrophages and their M2 polarization. CONCLUSIONS: Our study showed that LINC00543 enhanced EMT of CRC cells through the pre-miR-506-3p/FOXQ1 axis. This resulted in the upregulation of CCL2, leading to macrophages recruitment and M2 polarization, and ultimately stimulating the progression of CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Epithelial-Mesenchymal Transition/genetics , Colorectal Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement , Cell Proliferation/genetics , Neoplasm Metastasis , Tumor Microenvironment , Forkhead Transcription Factors/metabolism , Karyopherins/genetics
3.
Cancer Med ; 12(1): 131-145, 2023 01.
Article in English | MEDLINE | ID: mdl-35689454

ABSTRACT

BACKGROUND: The tumor-stromal ratio (TSR) has been verified to be a prognostic factor in many solid tumors. In most studies, it was manually assessed on routinely stained H&E slides. This study aimed to assess the TSR using image analysis algorithms developed by the Qupath software, and integrate the TSR into a nomogram for prediction of the survival in invasive breast cancer (BC) patients. METHODS: A modified TSR assessment algorithm based on the recognition of tumor and stroma tissues was developed using the Qupath software. The TSR of 234 invasive BC specimens in H&E-stained tissue microarrays (TMAs) were assessed with the algorithm and categorized as stroma-low or stroma-high. The consistency of TSR estimation between Qupath prediction and pathologist annotation was analyzed. Univariable and multivariable analyses were applied to select potential risk factors and a nomogram for predicting survival in invasive BC patients was constructed and validated. An extra TMA containing 110 specimens was obtained to validate the conclusion as an independent cohort. RESULTS: In the discovery cohort, stroma-low and stroma-high were identified in 43.6% and 56.4% cases, respectively. Good concordance was observed between the pathologist annotated and Qupath predicted TSR. The Kaplan-Meier curve showed that stroma-high patients were associated with worse 5-DFS compared to stroma-low patients (p = 0.007). Multivariable analysis identified age, T stage, N status, histological grade, ER status, HER-2 gene, and TSR as potential risk predictors, which were included in the nomogram. The nomogram was well calibrated and showed a favorable predictive value for the recurrence of BC. Kaplan-Meier curves showed that the nomogram had a better risk stratification capability than the TNM staging system. In the external validation of the nomogram, the results were further validated. CONCLUSIONS: Based on H&E-stained TMAs, this study successfully developed image analysis algorithms for TSR assessment and constructed a nomogram for predicting survival in invasive BC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Nomograms , Prognosis , Neoplasm Staging , Algorithms
4.
Immunology ; 168(2): 346-361, 2023 02.
Article in English | MEDLINE | ID: mdl-36326481

ABSTRACT

Tumour-associated macrophages (TAMs) are one of the primary sources of PD-L1 expression in the tumour microenvironment (TME). Ionizing radiation (IR) promotes PD-L1 expression in tumour cells. However, the effect of IR on macrophage PD-L1 expression and the underlying mechanisms remain unclear. ATM kinase, as the key kinase for initiating DNA damage repair (DDR) process, is associated with innate immune STING axis activation. Here, we explored the molecular mechanism implicated in macrophage PD-L1 expression regulated by IR as well as the role of ATM kinase in this process. IR-regulated PD-L1 expression in macrophages and associated signalling pathways were explored by in vitro studies using murine and human macrophage cell lines. A colorectal xenograft murine model was employed to demonstrate the impact of targeting ATM and PD-L1 expression in TAMs following IR on growth of tumour in vivo. IR up-regulated PD-L1 expression in macrophages, which was further augmented by ATM kinase inhibition. ATM inhibition increased IR-induced DNA damage, which activated STING/interferon regulatory factor 3 (IRF3) signalling pathway and up-regulated type I interferon (IFN-I) expression in macrophages. IFN-I bound to the IFN α receptor 1 on macrophages, activated the downstream JAK1 and STAT1/3 signalling and eventually led to PD-L1 up-expression. ATM inhibition augmented IR-induced PD-L1 expression in macrophages and CD8+ T cell infiltration, and promoted anti-tumour efficacy in vivo. These results suggested that ATM inhibition promoted IR-induced PD-L1 expression through the activation of innate immunity in TAMs, which provided a novel approach to enhance the anti-tumour efficacy of RT.


Subject(s)
Ataxia Telangiectasia , Neoplasms , Humans , Animals , Mice , Interferons , Tumor-Associated Macrophages , B7-H1 Antigen/metabolism , Signal Transduction , Tumor Microenvironment
5.
Clin Transl Med ; 12(8): e992, 2022 08.
Article in English | MEDLINE | ID: mdl-35969010

ABSTRACT

BACKGROUND: Regulatory T (Treg) cells are important components of the tumour microenvironment (TME) that play roles in gastric cancer (GC) metastasis. Although tumour cells that undergo epithelial-mesenchymal transition (EMT) regulate Treg cell function, their regulatory mechanism in GC remains unclear. METHODS: The miR-192-5p was identified by examining three Gene Expression Omnibus GC miRNA expression datasets. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were conducted to identify interactions between miR-192-5p and RB1. The role of miR-192-5p/RB1 in GC progression was evaluated based on EdU incorporation, wound healing and Transwell assays. An in vitro co-culture assay was performed to measure the effect of miR-192-5p/RB1 on Treg cell differentiation. In vivo experiments were conducted to explore the role of miR-192-5p in GC progression and Treg cell differentiation. RESULTS: MiR-192-5p was overexpressed in tumour and was associated with poor prognosis in GC. MiR-192-5p bound to the RB1 3'-untranslated region, resulting in GC EMT, proliferation, migration and invasion. MiR-192-5p/RB1 mediated interleukin-10 (IL-10) secretion by regulating nuclear factor-kappaBp65 (NF-κBp65), affecting Treg cell differentiation. NF-κBp65, in turn, promoted miR-192-5p expression and formed a positive feedback loop. Furthermore, in vivo experiments confirmed that miR-192-5p/RB1 promotes GC growth and Treg cell differentiation. CONCLUSION: Collectively, our studies indicate that miR-192-5p/RB1 promotes EMT of tumour cells, and the miR-192-5p/RB1/NF-κBp65 signaling axis induces Treg cell differentiation by regulating IL-10 secretion in GC. Our results suggest that targeting miR-192-5p/RB1/NF-κBp65 /IL-10 may pave the way for the development of new immune treatments for GC.


Subject(s)
MicroRNAs , Stomach Neoplasms , Cell Differentiation/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Gene Expression , Gene Expression Regulation, Neoplastic/genetics , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Redox Biol ; 52: 102312, 2022 06.
Article in English | MEDLINE | ID: mdl-35447413

ABSTRACT

Peritoneal metastasis (PM) is the main site of gastric cancer (GC) distant metastasis and indicates an extremely poor prognosis and survival. Hypoxia is a common feature of peritoneal metastases and up-regulation of hypoxia inducible factor 1 alpha (HIF-1α) may be a potential driver in the occurrence of PM. Ferroptosis is a recently discovered form of regulated cell death and closely related to the occurrence and development of tumors. However, the underlying mechanism link HIF-1α to ferroptosis in PM of GC remains unknown. Here, lncRNA-microarrays and RNA library construction/lncRNA-seq results shown that lncRNA-PMAN was highly expressed in PM and significantly modulated by HIF-1α. Upregulation of PMAN is associated with poor prognosis and PM in patients with GC. PMAN was up-regulated by HIF-1α and improved the stability of SLC7A11 mRNA by promoting the cytoplasmic distribution of ELAVL1, which was identified in RNA-pulldown/mass spectrometry results. Accumulation of SLC7A11 increases the level of l-Glutathione (GSH) and inhibits the accumulation of reactive oxygen species (ROS) and irons in the GC cells. Finally protect GC cells against ferroptosis induced by Erastin and RSL3. Our findings have elucidated the effect of HIF-1α/PMAN/ELAVL1 in GC cells ferroptosis and provides theoretical support for the potential diagnostic biomarkers and therapeutic targets for PM in GC.


Subject(s)
Ferroptosis , RNA, Long Noncoding , Stomach Neoplasms , ELAV-Like Protein 1/genetics , Ferroptosis/genetics , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Stomach Neoplasms/metabolism
8.
Int J Biol Sci ; 18(4): 1415-1433, 2022.
Article in English | MEDLINE | ID: mdl-35280682

ABSTRACT

Ferroptosis is a novel form of cell death that is closely associated with the formation of many tumors. Our study focused on the mechanism by which long noncoding RNAs (lncRNAs) regulate ferroptosis in gastric cancer (GC) peritoneal metastasis (PM). We utilized lncRNA sequencing and protein profiling analysis to identify ferroptosis-associated lncRNAs and proteins. qRT-PCR was used to analyze the expression of BDNF-AS and FBXW7 in GC tissues and adjacent normal tissues. Chromatin isolation by RNA purification (ChIRP), RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and coimmunoprecipitation (co-IP) assays were performed to investigate the interaction between BDNF-AS and its downstream targets. Finally, the function of BDNF-AS was validated in vivo . We demonstrated that BDNF-AS was highly expressed in GC and PM tissues. High BDNF-AS expression was positively related to GC progression and poor prognosis. Functionally, BDNF-AS overexpression protected GC cells from ferroptosis and promoted the progression of GC and PM. Mechanistically, BDNF-AS could regulate FBXW7 expression by recruiting WDR5, thus affecting FBXW7 transcription, and FBXW7 regulated the protein expression of VDAC3 through ubiquitination. Conclusively, our research demonstrated that the BDNF-AS/WDR5/FBXW7 axis regulates ferroptosis in GC by affecting VDAC3 ubiquitination. BDNF-AS might be a biomarker for the evaluation of GC prognosis and the treatment of GC.


Subject(s)
Ferroptosis , Peritoneal Neoplasms , RNA, Long Noncoding , Stomach Neoplasms , Brain-Derived Neurotrophic Factor/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , F-Box-WD Repeat-Containing Protein 7/genetics , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Intracellular Signaling Peptides and Proteins , Mitochondrial Membrane Transport Proteins/genetics , Peritoneal Neoplasms/genetics , RNA, Long Noncoding/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Ubiquitination/genetics , Voltage-Dependent Anion Channels/genetics
9.
Cancer Manag Res ; 13: 3601-3617, 2021.
Article in English | MEDLINE | ID: mdl-33958894

ABSTRACT

BACKGROUND: Detection of aberrant methylated DNA in the stool is an effective early screening method for colorectal cancer (CRC). Previously, reporters identified that syndecan-2 (SDC2) and tissue factor pathway inhibitor 2 (TFPI2) were aberrantly methylated in most CRC tissues. However, the combined diagnostic role of them remains undefined. Our research aimed at probing the role and efficiency of the methylation status of SDC2 and TFPI2 in CRC early screening by using bioinformatics analysis and clinical stool sample validation. METHODS: The promoter and CpG site methylation levels of SDC2 and TFPI2 and their correlation with clinicopathological characteristics of CRC were analyzed using UALCAN, Methsurv, and Wanderer. UCSC Xena was used to perform survival analyses. LinkedOmics was used to do functional network analysis. DNA was isolated and purified from stool, and quantitative methylation-specific PCR (qMSP) was applied to detect methylatedSDC2 and TFPI2. RESULTS: The results showed that promoter and most CpG site methylation levels of SDC2 and TFPI2 were significantly higher in CRC than in normal tissues. Moreover, SDC2 and TFPI2 methylation showed a positive correlation. Functional network analysis suggested that both methylated SDC2 and TFPI2 were involved in tumor cells' metabolic programs. Besides, there was a higher positive integrated detection rate in CRC (n=61) with a sensitivity of 93.4% and in adenoma (Ade) (n=16) with a sensitivity of 81.3% than normal with a specificity of 94.3% in stool samples. What is more, integration of methylated SDC2 and TFPI2 showed a higher sensitivity and Youden index than a single gene in detecting Adeor CRC. CONCLUSION: Our data indicate that SDC2 and TFPI2 were hypermethylated in CRC, and integrated detection of methylated SDC2 and TFPI2 in stool has the potential to be an effective and noninvasive tool of CRC early screening.

SELECTION OF CITATIONS
SEARCH DETAIL
...