Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(7): 3419-3429, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36722936

ABSTRACT

Incorporating phase change capsules into polymeric matrices is an effective approach for developing flexible composites with both heat storage capacity and good thermal reliability, while the interfacial heat conductance between the capsules and the matrix has seldom been considered. Herein, paraffin@SiO2 nanocapsules synthesized by an interfacial polycondensation process using a basic catalyst were incorporated into a polydimethylsiloxane matrix for the first time to prepare phase change composites at different loadings. Furthermore, the composites containing the nanocapsules were systematically compared with the composites containing the paraffin@SiO2 microcapsules synthesized using an acidic catalyst. It is shown that, at every identical mass fraction, the composites containing the nanocapsules not only possessed larger latent heat than those containing the microcapsules, but also exhibited higher thermal conductivity and lower hardness. The enhancement in thermal conductivity as well as the decline in hardness for the composite containing the nanocapsules are revealed to originate from a larger amount of hydroxyl groups at the surfaces of the nanocapsules than the microcapsules, which could form more hydrogen bonds with the polymer matrix. This bonding favored the interfacial heat conductance between the nanocapsules and the matrix together with decreasing the crosslinking density of the matrix. Subsequently, composites with enhanced thermal conductivity were developed by combining the nanocapsules with a BN filler. By evaluating the performance for chip heat dissipation, it was found that, when the chip was heated at a power of 10 W, the incorporation of the paraffin@SiO2 nanocapsules at a loading of 36 wt% into the polymer matrix made a remarkable decrease in the chip equilibrium temperature by 31.7 °C, and a further decline by 8.9 °C occurred when combined with 16 wt% BN. This work sheds light on facilitating the interfacial heat conductance between phase change capsules and the polymer matrix by hydrogen bonding.

2.
J Environ Public Health ; 2022: 9554730, 2022.
Article in English | MEDLINE | ID: mdl-35800341

ABSTRACT

Based on the SBM model including unexpected output, this paper studies the water resource utilization efficiency of 30 provinces in China from 2003 to 2019. The study found that China's water resource utilization efficiency showed obvious provincial differences. The water resource utilization efficiency of most eastern coastal provinces was relatively high, and that of most central and western inland provinces was not high. There are also significant differences among the three regions of the East, the middle, and the West. The utilization efficiency of water resources in the East is the highest, followed by the middle, and the West is the lowest. The redundancy of input factors, such as labor, capital, and water consumption, is the main reason for the low efficiency of water resource utilization, and the redundancy of wastewater discharge also affects the efficiency of water resource utilization. The clustering results show that the utilization efficiency of water resources in most provinces of China is located in medium efficiency area and low efficiency area, and the efficiency needs to be improved. There are relatively few provinces in high-efficiency areas, highlighting that China's water resource utilization still faces severe challenges.


Subject(s)
Efficiency , Water Resources , China , Economic Development , Wastewater
3.
Front Physiol ; 13: 865172, 2022.
Article in English | MEDLINE | ID: mdl-35669578

ABSTRACT

As an invasive species, Bemisia tabaci Mediterranean (MED) has notable potential to adapt to a wide range of environmental temperatures, which enables it to successfully spread after invasion and occupy habitats over a wide latitude range. It has been postulated that chromatin remodeling mechanisms are related to the rapid acquisition of adaptive traits and thermal resistance in invasive species; however, relevant experimental evidence is scarce. To identify the molecular characteristics and assess the role of chromatin remodelers in thermal stress within invasive MED and native Asia II 1 of the B. tabaci species complex, we identified 13 switching defective/sucrose non-fermenting (SWI/SNF) and 10 imitation switch (ISWI) family members in the B. tabaci genome, analyzed their molecular characteristics and structures, and identified key mutation sites between MED and Asia II 1, then cloned the catalytic subunits, and revealed the difference in thermal tolerance function. The results showed that the expression levels of Bt-BRM-1 and Bt-BRM-2 were significantly higher in MED than in Asia II 1 during heat stress, and Bt-BRM-2 expression was significantly higher during cold stress. In addition, RNA interference results indicated that the two target genes had similar temperature tolerance function in the both two cryptic species. This study is the first to identify and analyze the molecular characteristics of SWI/SNF and ISWI family members and reveal their potential key roles in temperature tolerance in poikilothermic ectotherms. The results will assist in understanding the underlying temperature adaptation mechanism of invasive insects and will enrich stress adaptation research systems from an epigenetic perspective.

4.
Int J Mol Sci ; 22(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34281211

ABSTRACT

To reveal the mechanism of temperature preference in Tuta absoluta, one of the top 20 plant pests in the world, we cloned and identified TaTRPA1, TaPain, and TaPyx genes by RACE and bioinformatic analysis, and clarified their expression profiles during different development stages using real-time PCR, and revealed their function in preference temperature by RNAi. The full-length cDNA of TaPain was 3136 bp, with a 2865-bp open reading frame encoding a 259.89-kDa protein; and the partial length cDNA of TaPyx was 2326-bp, with a 2025-bp open reading frame encoding a 193.16-kDa protein. In addition, the expression of TaTRPA1 and TaPyx was significantly lower in larvae than other stages, and it was significantly higher in pupae and newly emerging males for TaPain. After feeding target double-stranded RNA (dsRNA), the preferred temperature decreased 2 °C more than the control group. In conclusion, the results firstly indicated the molecular characterization of TRPA subfamily genes and their key role in temperature perception in T. absoluta, and the study will help us to understand the temperature-sensing mechanism in the pest, and will provide some basis for study of other Lepidoptera insects' temperature preference. Moreover, it is of great significance in enriching the research progress of "thermos TRP".


Subject(s)
Moths/genetics , TRPA1 Cation Channel/genetics , Amino Acid Sequence , Animals , Base Sequence , Behavior, Animal , Female , Larva/metabolism , Male , Moths/metabolism , Pupa/metabolism , Temperature
5.
Inorg Chem ; 58(12): 7645-7648, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31124667

ABSTRACT

We report the synthesis, characterization, and photophysical and photochemical properties of [Ru(bpy)2(py)2]2+@Zn-oxalate metal-organic framework (Ru@MOF; bpy is 2,2'-bipyridine and py is pyridine). In Ru@MOF, the cavities of the anionic Zn-oxalate MOF tightly encapsulate [Ru(bpy)2(py)2]2+ complexes, thereby altering the vibrational and electronic states of [Ru(bpy)2(py)2]2+ and preventing photosubstitution of py ligands. [Ru(bpy)2(py)2]2+ in Ru@MOF exhibits significantly increased photoluminescence lifetime and quantum yield, likely through destabilizing the dd state and enhancing photochemical stability.

6.
Chem Sci ; 9(1): 143-151, 2018 Jan 07.
Article in English | MEDLINE | ID: mdl-29629082

ABSTRACT

We report the synthesis of a terpyridine-based metal-organic layer (TPY-MOL) and its metalation with CoCl2 and FeBr2 to afford CoCl2·TPY-MOL and FeBr2·TPY-MOL, respectively. Upon activation with NaEt3BH, CoCl2·TPY-MOL catalyzed benzylic C-H borylation of methylarenes whereas FeBr2·TPY-MOL catalyzed intramolecular Csp3 -H amination of alkyl azides to afford pyrrolidines and piperidines. X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy, UV-Vis-NIR spectroscopy, and electron paramagnetic spectroscopy (EPR) measurements as well as density functional theory (DFT) calculations identified M(THF)2·TPY-MOL (M = Co or Fe) as the active catalyst with a MII-(TPY˙˙)2- electronic structure featuring divalent metals and TPY diradical dianions. We believe that site isolation stabilizes novel MII-(TPY˙˙)2- (M = Co or Fe) species in the MOLs to endow them with unique and enhanced catalytic activities for Csp3 -H borylation and intramolecular amination over their homogeneous counterparts. The MOL catalysts are also superior to their metal-organic framework analogs owing to the removal of diffusion barriers. Our work highlights the potential of MOLs as a novel 2D molecular material platform for designing single-site solid catalysts without diffusional constraints.

7.
J Am Chem Soc ; 140(1): 433-440, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29211477

ABSTRACT

Titania (TiO2) is widely used in the chemical industry as an efficacious catalyst support, benefiting from its unique strong metal-support interaction. Many proposals have been made to rationalize this effect at the macroscopic level, yet the underlying molecular mechanism is not understood due to the presence of multiple catalytic species on the TiO2 surface. This challenge can be addressed with metal-organic frameworks (MOFs) featuring well-defined metal oxo/hydroxo clusters for supporting single-site catalysts. Herein we report that the Ti8(µ2-O)8(µ2-OH)4 node of the Ti-BDC MOF (MIL-125) provides a single-site model of the classical TiO2 support to enable CoII-hydride-catalyzed arene hydrogenation. The catalytic activity of the supported CoII-hydride is strongly dependent on the reduction of the Ti-oxo cluster, definitively proving the pivotal role of TiIII in the performance of the supported catalyst. This work thus provides a molecularly precise model of Ti-oxo clusters for understating the strong metal-support interaction of TiO2-supported heterogeneous catalysts.

8.
J Am Chem Soc ; 139(49): 17747-17750, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29179548

ABSTRACT

Molecular iridium catalysts immobilized in metal-organic frameworks (MOFs) were positioned in the condensing chamber of a Soxhlet extractor for efficient CO2 hydrogenation. Droplets of hot water seeped through the MOF catalyst to create dynamic gas/liquid interfaces which maximize the contact of CO2, H2, H2O, and the catalyst to achieve a high turnover frequency of 410 h-1 under atmospheric pressure and at 85 °C. H/D kinetic isotope effect measurements and density functional theory calculations revealed concerted proton-hydride transfer in the rate-determining step of CO2 hydrogenation, which was difficult to unravel in homogeneous reactions due to base-catalyzed H/D exchange.

9.
J Am Chem Soc ; 139(33): 11325-11328, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28797163

ABSTRACT

We report the stepwise and quantitative transformation of the Zr6(µ3-O)4(µ3-OH)4(HCO2)6 nodes in Zr-BTC (MOF-808) to the [Zr6(µ3-O)4(µ3-OH)4Cl12]6- nodes in ZrCl2-BTC, and then to the organometallic [Zr6(µ3-O)4(µ3-OLi)4R12]6- nodes in ZrR2-BTC (R = CH2SiMe3 or Me). Activation of ZrCl2-BTC with MMAO-12 generates ZrMe-BTC, which is an efficient catalyst for ethylene polymerization. ZrMe-BTC displays unusual electronic and steric properties compared to homogeneous Zr catalysts, possesses multimetallic active sites, and produces high-molecular-weight linear polyethylene. Metal-organic framework nodes can thus be directly transformed into novel single-site solid organometallic catalysts without homogeneous analogs for polymerization reactions.

10.
Angew Chem Int Ed Engl ; 56(40): 12102-12106, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28804945

ABSTRACT

We report the rational design of metal-organic layers (MOLs) that are built from [Hf6 O4 (OH)4 (HCO2 )6 ] secondary building units (SBUs) and Ir[bpy(ppy)2 ]+ - or [Ru(bpy)3 ]2+ -derived tricarboxylate ligands (Hf-BPY-Ir or Hf-BPY-Ru; bpy=2,2'-bipyridine, ppy=2-phenylpyridine) and their applications in X-ray-induced photodynamic therapy (X-PDT) of colon cancer. Heavy Hf atoms in the SBUs efficiently absorb X-rays and transfer energy to Ir[bpy(ppy)2 ]+ or [Ru(bpy)3 ]2+ moieties to induce PDT by generating reactive oxygen species (ROS). The ability of X-rays to penetrate deeply into tissue and efficient ROS diffusion through ultrathin 2D MOLs (ca. 1.2 nm) enable highly effective X-PDT to afford superb anticancer efficacy.


Subject(s)
Metal-Organic Frameworks/chemistry , Nanotechnology , Photochemotherapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Fourier Analysis , Mice , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Powder Diffraction , Reactive Oxygen Species/chemistry , Ruthenium Compounds/chemistry , X-Rays , Xenograft Model Antitumor Assays
11.
Faraday Discuss ; 201: 303-315, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28627532

ABSTRACT

We report here the synthesis of a robust and highly porous Fe-phenanthroline-based metal-organic framework (MOF) and its application in catalyzing challenging inter- and intramolecular C-H amination reactions. For the intermolecular amination reactions, a FeBr2-metalated MOF selectively functionalized secondary benzylic and allylic C-H bonds. The intramolecular amination reactions utilizing organic azides as the nitrene source required the reduction of the FeBr2-metalated MOF with NaBHEt3 to generate the active catalyst. For both reactions, Fe or Zr leaching was less than 0.1%, and MOFs could be recycled and reused with no loss in catalytic activity. Furthermore, MOF catalysts were significantly more active than the corresponding homogeneous analogs. This work demonstrates the great potential of MOFs in generating highly active, recyclable, and reusable earth abundant metal catalysts for challenging organic transformations.

12.
J Am Chem Soc ; 139(20): 7020-7029, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28467852

ABSTRACT

The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal-organic layers (2D-MOLs) and three-dimensional metal-organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3″-nitro-4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal-ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.

13.
J Am Chem Soc ; 139(20): 7004-7011, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28478673

ABSTRACT

We report here the synthesis of a robust and porous metal-organic framework (MOF), Zr12-TPDC, constructed from triphenyldicarboxylic acid (H2TPDC) and an unprecedented Zr12 secondary building unit (SBU): Zr12(µ3-O)8(µ3-OH)8(µ2-OH)6. The Zr12-SBU can be viewed as an inorganic node dimerized from two commonly observed Zr6 clusters via six µ2-OH groups. The metalation of Zr12-TPDC SBUs with CoCl2 followed by treatment with NaBEt3H afforded a highly active and reusable solid Zr12-TPDC-Co catalyst for the hydrogenation of nitroarenes, nitriles, and isocyanides to corresponding amines with excellent activity and selectivity. This work highlights the opportunity in designing novel MOF-supported single-site solid catalysts by tuning the electronic and steric properties of the SBUs.

14.
Angew Chem Int Ed Engl ; 56(33): 9704-9709, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28543992

ABSTRACT

Microenvironments in enzymes play crucial roles in controlling the activities and selectivities of reaction centers. Herein we report the tuning of the catalytic microenvironments of metal-organic layers (MOLs), a two-dimensional version of metal-organic frameworks (MOFs) with thickness down to a monolayer, to control product selectivities. By modifying the secondary building units (SBUs) of MOLs with monocarboxylic acids, such as gluconic acid, we changed the hydrophobicity/hydrophilicity around the active sites and fine-tuned the selectivity in photocatalytic oxidation of tetrahydrofuran (THF) to exclusively afford butyrolactone (BTL), likely a result of prolonging the residence time of reaction intermediates in the hydrophilic microenvironment of catalytic centers. Our work highlights new opportunities in using functional MOLs as highly tunable and selective two-dimensional catalytic materials.

15.
Angew Chem Int Ed Engl ; 55(44): 13739-13743, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27712019

ABSTRACT

A series of porous twofold interpenetrated In-CoIII (porphyrin) metal-organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII (porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-CoIII (porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII (porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.

16.
J Am Chem Soc ; 138(45): 14860-14863, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27792322

ABSTRACT

We report the stepwise, quantitative transformation of CeIV6(µ3-O)4(µ3-OH)4(OH)6(OH2)6 nodes in a new Ce-BTC (BTC = trimesic acid) metal-organic framework (MOF) into the first CeIII6(µ3-O)4(µ3-OLi)4(H)6(THF)6Li6 metal-hydride nodes that effectively catalyze hydroboration and hydrophosphination reactions. CeH-BTC displays low steric hindrance and electron density compared to homogeneous organolanthanide catalysts, which likely accounts for the unique 1,4-regioselectivity for the hydroboration of pyridine derivatives. MOF nodes can thus be directly transformed into novel single-site solid catalysts without homogeneous counterparts for sustainable chemical synthesis.

17.
J Am Chem Soc ; 138(37): 12234-42, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27598720

ABSTRACT

We report here the synthesis of robust and porous metal-organic frameworks (MOFs), M-MTBC (M = Zr or Hf), constructed from the tetrahedral linker methane-tetrakis(p-biphenylcarboxylate) (MTBC) and two types of secondary building units (SBUs): cubic M8(µ2-O)8(µ2-OH)4 and octahedral M6(µ3-O)4(µ3-OH)4. While the M6-SBU is isostructural with the 12-connected octahedral SBUs of UiO-type MOFs, the M8-SBU is composed of eight M(IV) ions in a cubic fashion linked by eight µ2-oxo and four µ2-OH groups. The metalation of Zr-MTBC SBUs with CoCl2, followed by treatment with NaBEt3H, afforded highly active and reusable solid Zr-MTBC-CoH catalysts for the hydrogenation of alkenes, imines, carbonyls, and heterocycles. Zr-MTBC-CoH was impressively tolerant of a range of functional groups and displayed high activity in the hydrogenation of tri- and tetra-substituted alkenes with TON > 8000 for the hydrogenation of 2,3-dimethyl-2-butene. Our structural and spectroscopic studies show that site isolation of and open environments around the cobalt-hydride catalytic species at Zr8-SBUs are responsible for high catalytic activity in the hydrogenation of a wide range of challenging substrates. MOFs thus provide a novel platform for discovering and studying new single-site base-metal solid catalysts with enormous potential for sustainable chemical synthesis.

18.
Nat Commun ; 7: 12610, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27574182

ABSTRACT

Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

19.
J Am Chem Soc ; 138(31): 9783-6, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27452528

ABSTRACT

Mono(phosphine)-M (M-PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal-organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C-H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M-PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

20.
Angew Chem Int Ed Engl ; 55(22): 6411-6, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27094346

ABSTRACT

Metal-organic frameworks (MOFs) provide a tunable platform for hierarchically integrating multiple components to effect synergistic functions that cannot be achieved in solution. Here we report the encapsulation of a Ni-containing polyoxometalate (POM) [Ni4 (H2 O)2 (PW9 O34 )2 ](10-) (Ni4 P2 ) into two highly stable and porous phosphorescent MOFs. The proximity of Ni4 P2 to multiple photosensitizers in Ni4 P2 @MOF allows for facile multi-electron transfer to enable efficient visible-light-driven hydrogen evolution reaction (HER) with turnover numbers as high as 1476. Photophysical and electrochemical studies established the oxidative quenching of the excited photosensitizer by Ni4 P2 as the initiating step of HER and explained the drastic catalytic activity difference of the two POM@MOFs. Our work shows that POM@MOF assemblies not only provide a tunable platform for designing highly effective photocatalytic HER catalysts but also facilitate detailed mechanistic understanding of HER processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...