Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(8): 13527-13542, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859320

ABSTRACT

We report on the growth, polarized spectroscopy and first laser operation of an orthorhombic (space group Pnma) Tm3+,Ho3+-codoped gadolinium orthoscandate (GdScO3) perovskite-type crystal. A single crystal of 3.76 at.% Tm, 0.35 at.% Ho:GdScO3 was grown by the Czochralski method. Its polarized absorption and fluorescence properties were studied revealing a broadband emission around 2 µm. The parameters of the Tm3+ ↔ Ho3+ energy transfer was quantified, P28 = 1.30 × 10-22 cm3µs-1, and P71 = 0.99 × 10-23 cm3µs-1, and the thermal equilibrium lifetime was measured to be 3.5 ms. The crystal-field splitting of Tm3+ and Ho3+ multiplets in Cs symmetry sites of the perovskite structure was determined by low-temperature spectroscopy and the mechanism of spectral line broadening is discussed. The continuous-wave Tm,Ho:GdScO3 laser generated 1.16 W at ∼2.1 µm with a slope efficiency of 50.5%, a laser threshold of 184 mW, a linear laser polarization (E || c) and a spatially single-mode output. The Tm,Ho:GdScO3 crystal is promising for broadly tunable and femtosecond mode-locked lasers emitting above 2 µm.

2.
Opt Express ; 32(5): 7865-7872, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439456

ABSTRACT

We report on the investigation of continuous-wave (CW) and SEmiconductor Saturable Absorber Mirror (SESAM) mode-locked operation of a Yb:GdScO3 laser. Using a single-transverse-mode, fiber-coupled InGaAs laser diode at 976 nm as a pump source, the Yb:GdScO3 laser delivers 343 mW output power at 1062 nm in the CW regime, which corresponds to a slope efficiency of 52%. Continuous tuning is possible across a wavelength range of 84 nm (1027-1111 nm). Using a commercial SESAM to initiate mode-locking and stabilize soliton-type pulse shaping, the Yb:GdScO3 laser produces pulses as short as 42 fs at 1065.9 nm, with an average output power of 40 mW at 66.89 MHz. To the best of our knowledge, this is the first demonstration of passively mode-locking with Yb:GdScO3 crystal.

3.
Opt Express ; 32(3): 3221-3233, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297548

ABSTRACT

We present the growth, spectroscopy, continuous-wave (CW) and passively mode-locked (ML) operation of a novel "mixed" tetragonal calcium rare-earth aluminate crystal, Yb3+:Ca(Gd,Y)AlO4. The absorption, stimulated-emission, and gain cross-sections are derived for π and σ polarizations. The laser performance of a c-cut Yb:Ca(Gd,Y)AlO4 crystal is studied using a spatially single-mode, 976-nm fiber-coupled laser diode as a pump source. A maximum output power of 347 mW is obtained in the CW regime with a slope efficiency of 48.9%. The emission wavelength is continuously tunable across 90 nm (1010 - 1100 nm) using a quartz-based Lyot filter. With a commercial SEmiconductor Saturable Absorber Mirror to initiate and maintain ML operation, soliton pulses as short as 35 fs are generated at 1059.8 nm with an average output power of 51 mW at ∼65.95 MHz. The average output power can be scaled to 105 mW for slightly longer pulses of 42 fs at 1063.5 nm.

4.
Opt Express ; 32(3): 3974-3979, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297606

ABSTRACT

We report on the continuous-wave (CW) and, for what we believe to be the first time, passively mode-locked (ML) laser operation of an Yb3+-doped YSr3(PO4)3 crystal. Utilizing a 976-nm spatially single-mode, fiber-coupled laser diode as pump source, the Yb:YSr3(PO4)3 laser delivers a maximum CW output power of 333 mW at 1045.8 nm with an optical efficiency of 55.7% and a slope efficiency of 60.9%. Employing a quartz-based Lyot filter, an impressive wavelength tuning range of 97 nm at the zero level was achieved in the CW regime, spanning from 1007 nm to 1104 nm. In the ML regime, incorporating a commercially available semiconductor saturable absorber mirror (SESAM) to initiate and maintain soliton-like pulse shaping, the Yb:YSr3(PO4)3 laser generated pulses as short as 61 fs at 1062.7 nm, with an average output power of 38 mW at a repetition rate of ∼66.7 MHz.

5.
Opt Express ; 31(21): 35032-35040, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859244

ABSTRACT

We present a method for phase retardation measurement of intracavity optical elements which is based on frequency splitting caused by weak phase anisotropy of Nd: YAG. The measurement range covers 0-π and the measurement uncertainty is less than 0.0300 rad. A theoretical analysis is provided to obtain the phase retardation of intracavity optical elements by using the phase difference or frequency difference of two eigenmodes. The minimum error is 0.0036 rad by using the composite wave plate to verify various phase retardation conditions. This work provides a rapid and accurate intracavity method for measuring the phase retardation of optical elements.

6.
Opt Express ; 31(8): 12463-12470, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157405

ABSTRACT

We report on sub-40 fs pulse generation from a Yb:Sc2SiO5 laser pumped by a spatially single-mode fiber-coupled laser diode at 976 nm. A maximum output power of 545 mW was obtained at 1062.6 nm in the continuous-wave regime, corresponding to a slope efficiency of 64% and a laser threshold of 143 mW. A continuous wavelength tuning across 80 nm (1030 -1110 nm) was also achieved. Implementing a SESAM for starting and stabilizing the mode-locked operation, the Yb:Sc2SiO5 laser delivered soliton pulses as short as 38 fs at 1069.5 nm with an average output power of 76 mW at a pulse repetition rate of ∼79.8 MHz. The maximum output power was scaled to 216 mW for slightly longer pulses of 42 fs, which corresponded to a peak power of 56.6 kW and an optical efficiency of 22.7%. To the best of our knowledge, these results represent the shortest pulses ever achieved with any Yb3+-doped rare-earth oxyorthosilicate crystal.

7.
Opt Express ; 31(6): 10617-10624, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157604

ABSTRACT

We report on the first sub-60 fs pulse generated from a diode-pumped SESAM mode-locked Yb-laser based on a non-centrosymmetric Yb:YAl3(BO3)4 crystal as a gain medium. In the continuous-wave regime, pumping with a spatially single-mode, fiber-coupled 976 nm InGaAs laser diode, the Yb:YAl3(BO3)4 laser generated 391 mW at 1041.7 nm with a slope efficiency as high as 65.1%, and a wavelength tuning across 59 nm (1019 to 1078 nm) was achieved. By implementing a commercial SESAM to initiate and sustain the soliton type mode-locking, and using only a 1 mm-thick laser crystal, the Yb:YAl3(BO3)4 laser delivered pulses as short as 56 fs at a central wavelength of 1044.6 nm with an average output power of 76 mW at a pulse repetition rate of ∼67.55 MHz. To the best of our knowledge, this result represents the shortest pulses ever achieved from Yb:YAB crystal.

8.
Opt Express ; 31(10): 16634-16644, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157739

ABSTRACT

We report on sub-50 fs pulse generation from a passively mode-locked Yb:SrF2 laser pumped with a spatially single-mode, fiber-coupled laser diode at 976 nm. In the continuous-wave regime, the Yb:SrF2 laser generated a maximum output power of 704 mW at 1048 nm with a threshold of 64 mW and a slope efficiency of 77.2%. A continuous wavelength tuning across 89 nm (1006 - 1095 nm) was achieved with a Lyot filter. By implementing a SEmiconductor Saturable Absorber Mirror (SESAM) for initiating and sustaining the mode-locked operation, soliton pulses as short as 49 fs were generated at 1057 nm with an average output power of 117 mW at a pulse repetition rate of ∼75.9 MHz. The maximum average output power of the mode-locked Yb:SrF2 laser was scaled up to 313 mW for slightly longer pulses of 70 fs at 1049.4 nm, corresponding to a peak power of 51.9 kW and an optical efficiency of 34.7%.

9.
Opt Express ; 31(5): 8575-8585, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859969

ABSTRACT

We report on a Kerr-lens mode-locked laser based on an Yb3+-doped disordered calcium lithium niobium gallium garnet (Yb:CLNGG) crystal. Pumping by a spatially single-mode Yb fiber laser at 976 nm, the Yb:CLNGG laser delivers soliton pulses as short as 31 fs at 1056.8 nm with an average output power of 66 mW and a pulse repetition rate of ∼77.6 MHz via soft-aperture Kerr-lens mode-locking. The maximum output power of the Kerr-lens mode-locked laser amounted to 203 mW for slightly longer pulses of 37 fs at an absorbed pump power of 0.74 W, which corresponds to a peak power of 62.2 kW and an optical efficiency of 20.3%.

10.
Opt Express ; 30(18): 31986-31997, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242269

ABSTRACT

We report on sub-30 fs pulse generation from a semiconductor saturable absorber mirror mode-locked Yb:YAP laser. Pumping by a spatially single-mode Yb fiber laser at 979 nm, soliton pulses as short as 29 fs were generated at 1091 nm with an average output power of 156 mW and a pulse repetition rate of 85.1 MHz. The maximum output power of the mode-locked Yb:YAP laser amounted to 320 mW for slightly longer pulses (32 fs) at an incident pump power of 1.52 W, corresponding to a peak power of 103 kW and an optical efficiency of 20.5%. To the best of our knowledge, this result represents the shortest pulses ever achieved from any solid-state Yb laser mode-locked by a slow, i.e., physical saturable absorber.

11.
Opt Lett ; 47(18): 4728-4731, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36107073

ABSTRACT

We report on a Kerr-lens mode-locked Yb:YAlO3 laser generating soliton pulses as short as 24 fs at 1085 nm with an average output power of 186 mW and a pulse repetition rate of 87.5 MHz, representing the shortest pulses ever achieved from any mode-locked laser based on Yb3+-doped structurally ordered crystal. Optimized for power-scalable operation, the Yb:YAlO3 laser delivers 1.9 W at 1060 nm at the expense of a longer pulse duration of 44 fs, corresponding to a peak power of 462 kW and an optical efficiency of 43.2%.

12.
Opt Lett ; 47(12): 3027-3030, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35709041

ABSTRACT

We report on the first, to the best of our knowledge, Kerr-lens mode-locked laser based on an Yb3+-doped perovskite-type orthoaluminate crystal exploiting two different principal light polarizations. The Yb:(Y,Gd)AlO3 laser delivers soliton pulses as short as 32 fs at 1067 nm with an average output power of 328 mW and a pulse repetition rate of ∼84.6 MHz for E || a polarization. For the orthogonal E || b polarization, 33-fs pulses are generated at 1057 nm with an average output power of 305 mW. Power scaling to a maximum average output power reaching 2.07 W is achieved at the expense of longer pulse duration (72 fs for E || b), corresponding to an optical efficiency of 43.9% and a peak power of 303 kW.

13.
Opt Express ; 30(7): 11825-11832, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473117

ABSTRACT

We report on the continuous-wave (CW) and mode-locked (ML) laser performance of an Yb3+-doped yttrium-gadolinium orthoaluminate crystal, Yb:(Y,Gd)AlO3. Pumping by a single-transverse-mode fiber-coupled 976 nm InGaAs laser diode, the maximum output power in the CW regime amounted to 429 mW at 1041.8 nm corresponding to a slope efficiency of 51.1% and a continuous wavelength tuning across 84 nm (1011-1095 nm) was achieved. The self-starting ML operation of the Yb:(Y,Gd)AlO3 laser was stabilized by a semiconductor saturable absorber mirror. Soliton pulses as short as 43 fs were generated at 1052.3 nm with an average output power of 103 mW and a pulse repetition rate of ∼70.8 MHz. To the best of our knowledge, our result represents the first report on the passively mode-locked operation of a Yb:(Y,Gd)AlO3 laser, and the shortest pulse duration ever achieved from any Yb3+-doped orthorhombic perovskite aluminate crystals.

14.
Opt Express ; 30(7): 11833-11839, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473118

ABSTRACT

We report on a soliton mode-locked Yb:Ca3Gd2(BO3)4 laser at ∼1.06 µm stabilized by a semiconductor saturable absorber mirror. Pumping with a single-transverse mode, fiber-coupled laser diode at 976 nm, the Yb:Ca3Gd2(BO3)4 laser delivers soliton pulses as short as 39 fs at a central wavelength of 1059.2 nm with an average output power of 70 mW and a pulse repetition rate of ∼67.3 MHz.

15.
Opt Express ; 30(7): 11861-11871, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473121

ABSTRACT

We demonstrate the first sub-40 fs soliton pulse generation from a diode-pumped Yb:Sr3Y2(BO3)4 laser passively mode-locked by a semiconductor saturable absorber mirror. Pulses as short as 38 fs at a central wavelength of 1051.7 nm were achieved with an average output power of 115 mW and a pulse repetition rate of 67.7 MHz. The maximum average output power reached 303 mW at 1057.8 nm with a slightly longer pulse duration of 52 fs, which corresponded to a peak power of 76.9 kW and an optical efficiency of 25.3%.

16.
Opt Express ; 30(9): 15807-15818, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473293

ABSTRACT

We report on a continuous-wave (CW) and passively mode-locked operation of a fluorite-type Yb:BaF2 crystal. Pumped with a spatially single-mode, fiber-coupled InGaAs laser diode at 976 nm, the Yb:BaF2 laser generated a maximum CW output power of 512 mW at 1054.4 nm, corresponding to a laser threshold of 36.5 mW and a slope efficiency of 65.0%. A continuous wavelength tuning across 85 nm (1007-1092 nm) was achieved. By implementing a semiconductor saturable absorber mirror for initiating and sustaining the soliton pulse shaping, near Fourier-transform-limited pulses as short as 52 fs were generated at 1058.2 nm with an average output power of 129 mW at a pulse repetition rate of ∼79.5 MHz. To the best of our knowledge, this is the first report on the passively mode-locked operation of the Yb:BaF2 crystal.

17.
Opt Express ; 29(9): 13496-13503, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985081

ABSTRACT

We present a sub-50-fs diode-pumped Kerr-lens mode-locked laser employing a novel "mixed" monoclinic Yb:Ca4(Gd,Y)O(BO3)3 (Yb:GdYCOB) crystal as a gain medium. Nearly Fourier-limited pulses as short as 43 fs at 1036.7 nm are generated with an average power of 84 mW corresponding to a pulse repetition rate of ∼70.8 MHz. A higher average power of 300 mW was achieved at the expense of the pulse duration (113 fs) corresponding to an optical-to-optical efficiency of 35.8% representing a record-high value for any Yb-doped borate crystal. Non-phase-matched self-frequency doubling is observed in the mode-locked regime with pronounced strong spectral fringes which originate from two delayed green replicas of the fundamental femtosecond pulses in the time domain.

18.
Opt Express ; 29(1): 105-110, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33362093

ABSTRACT

We demonstrate a comprehensive characterization of the diode-pumped Yb:Bi4Si3O12 laser operating in the continuous-wave and soliton mode-locked regimes. Pumping with a 650 mW, single-transverse mode, fiber-coupled laser diode, a maximum continuous-wave output power amounted to 213 mW with a slope efficiency up to 57.6%. A broadband wavelength tuning range of more than 70 nm was achieved in CW regime with a fused silica prism. Applying a SESAM as mode locker, nearly transform-limited pulses as short as 113 fs were generated for a maximum average power of 53 mW and a pulse repetition rate of ∼106 MHz. To the best of our knowledge, this is the first report on passively mode-locked operation with the Yb:Bi4Si3O12 crystal.

19.
Opt Express ; 28(16): 23409-23415, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752338

ABSTRACT

We reported an electro-optically cavity-dumped Q-switched Er:Yb:YAl3(BO3)4 pulse laser for the first time. A 1531.1 nm pulse laser with an average output power of 521 mW, energy of 10 µJ, and a duration of 3.1 ns was achieved at a repetition rate of 100 kHz under the quasi-continuous-wave pumping. The pulse characteristics of the laser were investigated in detail. The result shows that the depolarization effects and the length of high voltage (HV) time applied to the EO-switch had significant impacts on the pulse characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...