Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1415723, 2024.
Article in English | MEDLINE | ID: mdl-38983623

ABSTRACT

The physiological and genotypic characteristics of Mangrovibacter (MGB) remain largely unexplored, including their distribution and abundance within ecosystems. M. phragmitis (MPH) ASIOC01 was successfully isolated from activated sludge (AS), which was pre-enriched by adding 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol as carbon sources. The new isolate, MPH ASIOC01, exhibited resilience in a medium containing sodium chloride concentration up to 11% (with optimal growth observed at 3%) and effectively utilizing glycerol as their sole carbon source. However, species delimitation of MGBs remains challenging due to high 16S rRNA sequence similarity (greater than 99% ANI) among different MGBs. In contrast, among the housekeeping gene discrepancies, the tryptophan synthase beta chain gene can serve as a robust marker for fast species delimitation among MGBs. Furthermore, the complete genome of MPH ASIOC01 was fully sequenced and circlized as a single contig using the PacBio HiFi sequencing method. Comparative genomics revealed genes potentially associated with various phenotypic features of MGBs, such as nitrogen-fixing, phosphate-solubilizing, cellulose-digesting, Cr-reducing, and salt tolerance. Computational analysis suggested that MPH ASIOC01 may have undergone horizontal gene transfer events, possibly contributing unique traits such as antibiotic resistance. Finally, our findings also disclosed that the introduction of MPH ASIOC01 into AS can assist in the remediation of wastewater chemical oxygen demand, which was evaluated using gas chromatograph-mass spectrometry. To the best of our knowledge, this study offers the most comprehensive understanding of the phenotypic and genotypic features of MGBs to date.

2.
J Am Chem Soc ; 144(22): 9695-9706, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35622083

ABSTRACT

Selective methane oxidation is difficult chemistry. Here we describe a strategy for the electrocatalysis of selective methane oxidation by immobilizing tricopper catalysts on the cathodic surface. In the presence of dioxygen and methane, the activation of these catalysts above a threshold cathodic potential can initiate the dioxygen chemistry for O atom transfer to methane. The catalytic turnover is completed by facile electron injections into the tricopper catalysts from the electrode. This technology leads to dramatic enhancements in performance of the catalysts toward methane oxidation. Unprecedented turnover frequencies (>40 min-1) and high product throughputs (turnover numbers >30 000 in 12 h) are achieved for this challenging chemical transformation in water under ambient conditions. The technology is green and suitable for on-site direct conversion of methane into methanol.


Subject(s)
Methane , Oxygenases , Catalysis , Oxidation-Reduction , Oxygen , Oxygenases/metabolism
3.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614054

ABSTRACT

Altered metabolism is a hallmark of aging. The tricarboxylic acid cycle (TCA cycle) is an essential metabolic pathway and plays an important role in lifespan regulation. Supplementation of α-ketoglutarate, a metabolite converted by isocitrate dehydrogenase alpha-1 (idha-1) in the TCA cycle, increases lifespan in C. elegans. However, whether idha-1 can regulate lifespan in C. elegans remains unknown. Here, we reported that the expression of idha-1 modulates lifespan and oxidative stress tolerance in C. elegans. Transgenic overexpression of idha-1 extends lifespan, increases the levels of NADPH/NADP+ ratio, and elevates the tolerance to oxidative stress. Conversely, RNAi knockdown of idha-1 exhibits the opposite effects. In addition, the longevity of eat-2 (ad1116) mutant via dietary restriction (DR) was reduced by idha-1 knockdown, indicating that idha-1 may play a role in DR-mediated longevity. Furthermore, idha-1 mediated lifespan may depend on the target of rapamycin (TOR) signaling. Moreover, the phosphorylation levels of S6 kinase (p-S6K) inversely correlate with idha-1 expression, supporting that the idha-1-mediated lifespan regulation may involve the TOR signaling pathway. Together, our data provide new insights into the understanding of idha-1 new function in lifespan regulation probably via DR and TOR signaling and in oxidative stress tolerance in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Isocitrate Dehydrogenase , Longevity , Oxidative Stress , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Longevity/genetics
4.
J Inorg Biochem ; 196: 110691, 2019 07.
Article in English | MEDLINE | ID: mdl-31063931

ABSTRACT

In this study, we describe efforts to clarify the role of the copper cofactors associated with subunit B (PmoB) of the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) (M. capsulatus). This subunit exhibits strong affinity toward CuI ions. To elucidate the high copper affinity of the subunit, the full-length PmoB, and the N-terminal truncated mutants PmoB33-414 and PmoB55-414, each fused to the maltose-binding protein (MBP), are cloned and over-expressed into Escherichia coli (E. coli) K12 TB1 cells. The Y374F, Y374S and M300L mutants of these protein constructs are also studied. When this E. coli is grown with the pmoB gene in 1.0 mM CuII, it behaves like M. capsulatus (Bath) cultured under high copper stress with abundant membrane accumulation and high CuI content. The recombinant PmoB proteins are verified by Western blotting of antibodies directed against the MBP sub-domain in each of the copper-enriched PmoB proteins. Cu K-edge X-ray absorption near edge spectroscopy (XANES) of the copper ions confirms that all the PmoB recombinants are CuI proteins. All the PmoB proteins show evidence of a "dicopper site" according to analysis of the Cu extended X-ray absorption edge fine structure (EXAFS) of the membranes. No specific activities toward methane and propene oxidation are observed with the recombinant membrane-bound PmoB proteins. However, significant production of hydrogen peroxide is observed in the case of the PmoB33-414 mutant. Reaction of the dicopper site with dioxygen produces hydrogen peroxide and leads to oxidation of the CuI ions residing in the C-terminal sub-domain of the PmoB subunit.


Subject(s)
Methylococcus capsulatus/enzymology , Oxygenases/chemistry , Oxygenases/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Copper/chemistry , Copper/metabolism , Membrane Proteins/metabolism , Oxidation-Reduction
5.
Aging Cell ; 13(4): 755-64, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24889782

ABSTRACT

Target of rapamycin (TOR) signaling is a nutrient-sensing pathway controlling metabolism and lifespan. Although TOR signaling can be activated by a metabolite of diacylglycerol (DAG), phosphatidic acid (PA), the precise genetic mechanism through which DAG metabolism influences lifespan remains unknown. DAG is metabolized to either PA via the action of DAG kinase or 2-arachidonoyl-sn-glycerol by diacylglycerol lipase (DAGL). Here, we report that in Drosophila and Caenorhabditis elegans, overexpression of diacylglycerol lipase (DAGL/inaE/dagl-1) or knockdown of diacylglycerol kinase (DGK/rdgA/dgk-5) extends lifespan and enhances response to oxidative stress. Phosphorylated S6 kinase (p-S6K) levels are reduced following these manipulations, implying the involvement of TOR signaling. Conversely, DAGL/inaE/dagl-1 mutants exhibit shortened lifespan, reduced tolerance to oxidative stress, and elevated levels of p-S6K. Additional results from genetic interaction studies are consistent with the hypothesis that DAG metabolism interacts with TOR and S6K signaling to affect longevity and oxidative stress resistance. These findings highlight conserved metabolic and genetic pathways that regulate aging.


Subject(s)
Caenorhabditis elegans/enzymology , Drosophila melanogaster/enzymology , Lipoprotein Lipase/metabolism , Longevity , Oxidative Stress , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Adaptation, Physiological , Animals , Caenorhabditis elegans/physiology , Drosophila melanogaster/physiology , Epistasis, Genetic , Gene Knockdown Techniques , Mutation/genetics , Phosphorylation , RNA Interference , Ribosomal Protein S6 Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...