Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8160, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589521

ABSTRACT

To analyze the changing trend of CH and CRF values under different influencing factors in T2DM patients. A total of 650 patients with T2DM were included. We discovered that the course of T2DM, smoking history, BMI, and FBG, DR, HbA1c, TC, TG, and LDL-C levels were common risk factors for T2DM, while HDL-C levels were a protective factor. Analyzing the CH and CRF values according to the course of diabetes, we discovered that as T2DM continued to persist, the values of CH and CRF gradually decreased. Moreover, with the increase in FBG levels and the accumulation of HbA1c, the values of CH and CRF gradually decreased. In addition, in patients with HbA1c (%) > 12, the values of CH and CRF decreased the most, falling by 1.85 ± 0.33 mmHg and 1.28 ± 0.69 mmHg, respectively. Compared with the non-DR group, the CH and CRF values gradually decreased in the mild-NPDR, moderate-NPDR, severe-NPDR and PDR groups, with the lowest CH and CRF values in the PDR group. In patients with T2DM, early measurement of corneal biomechanical properties to evaluate the change trend of CH and CRF values in different situations will help to identify and prevent diabetic keratopathy in a timely manner.


Subject(s)
Cornea , Diabetes Mellitus, Type 2 , Humans , Glycated Hemoglobin , Biomechanical Phenomena , Intraocular Pressure , Elasticity , Tonometry, Ocular
3.
Clin Transl Sci ; 15(9): 2184-2194, 2022 09.
Article in English | MEDLINE | ID: mdl-35730131

ABSTRACT

PF-05251749 is a dual inhibitor of casein kinase 1 δ/ε under clinical development to treat disruption of circadian rhythm in Alzheimer's and Parkinson's diseases. In vitro, PF-05251749 (0.3-100 µM) induced CYP3A in cryopreserved human hepatocytes, demonstrating non-saturable, dose-dependent CYP3A mRNA increases, with induction slopes in the range 0.036-0.39 µM-1 . In a multiple-dose study (B8001002) in healthy participants, CYP3A activity was explored by measuring changes in 4ß-hydroxycholesterol/cholesterol ratio. Following repeated oral administration of PF-05251749, up to 400 mg q.d., no significant changes were observed in 4ß-hydroxycholesterol/cholesterol ratio; this ratio increased significantly (~1.5-fold) following administration of PF-05251749 at 750 mg q.d., suggesting potential CYP3A induction at this dose. Physiologically based pharmacokinetic (PBPK) models were developed to characterize the observed clinical pharmacokinetics (PK) of PF-05251749 at 400 and 750 mg q.d.; the PBPK induction model was calibrated using the in vitro linear fit induction slope, with rifampin as reference compound (Indmax  = 8, EC50  = 0.32 µM). Clinical trial simulation following co-administration of PF-05251749, 400 mg q.d. with oral midazolam 2 mg, predicted no significant drug interaction risk. PBPK model predicted weak drug interaction following co-administration of PF-05251749, 750 mg q.d. with midazolam 2 mg. In conclusion, good agreement was obtained between CYP3A drug interaction risk predicted using linear-slope PBPK model and exploratory biomarker trends. This agreement between two orthogonal approaches enabled assessment of drug interaction risks of PF-05251749 in early clinical development, in the absence of a clinical drug-drug interaction study.


Subject(s)
Cytochrome P-450 CYP3A , Midazolam , Biomarkers , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A Inducers , Drug Interactions , Humans , Midazolam/pharmacokinetics , Models, Biological
4.
J Pharmacol Exp Ther ; 365(2): 262-271, 2018 05.
Article in English | MEDLINE | ID: mdl-29440451

ABSTRACT

The potential for drug-drug interactions (DDIs) arising from transcriptional regulation of drug-disposition genes via activation of nuclear receptors (NRs), such as pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR), remains largely unexplored, as highlighted in a recent guidance document from the European Medicines Agency. The goal of this research was to establish PXR-/CAR-/AhR-specific drug-metabolizing enzyme (DME) and transporter gene expression signatures in sandwich-cultured cryopreserved human hepatocytes using selective activators of PXR (rifampin), CAR (CITCO), and AhR (omeprazole). Dose response for ligand-induced changes to 38 major human DMEs and critical hepatobiliary transporters were assessed using a custom gene expression array card. We identified novel differentially expressed drug-disposition genes for PXR (↑ABCB1/MDR1, CYP2C9, CYP2C19, and EPHX1, ↓ABCB11), CAR [↑sulfotransferase (SULT) 1E1, uridine glucuronosyl transferase (UGT) 2B4], and AhR (↑SLC10A1/NTCP, SLCO1B1/OATP1B1], and coregulated genes (CYP1A1, CYP2B6, CYP2C8, CYP3A4, UGT1A1, UGT1A4). Subsequently, DME gene expression signatures were generated for known CYP3A4 inducers PF-06282999 and pazopanib. The former produced an induction signature almost identical to that of rifampin, suggesting activation of the PXR pathway, whereas the latter produced an expression signature distinct from those of PXR, CAR, or AhR, suggesting involvement of an alternate pathway(s). These results demonstrate that involvement of PXR/CAR/AhR can be identified via expression changes of signature DME/transporter genes. Inclusion of such signature genes could serve to simultaneously identify potential inducers and inhibitors, and the NRs involved in the transcriptional regulation, thus providing a more holistic and mechanism-based assessment of DDI risk for DMEs and transporters beyond conventional cytochrome P450 isoforms.


Subject(s)
Hepatocytes/drug effects , Hepatocytes/metabolism , Pharmaceutical Preparations/metabolism , Pregnane X Receptor/genetics , Receptors, Aryl Hydrocarbon/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Transcription, Genetic/drug effects , Biological Transport/genetics , Constitutive Androstane Receptor , Cryopreservation , Hepatocytes/cytology , Humans , Transcriptional Activation/drug effects , Xenobiotics/metabolism
5.
Xenobiotica ; 48(7): 647-655, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28685622

ABSTRACT

1. 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl) acetamide (PF-06282999) is a member of the thiouracil class of irreversible inactivators of human myeloperoxidase enzyme and a candidate for the treatment of cardiovascular disease. PF-06282999 is an inducer of CYP3A4 mRNA and midazolam-1'-hydroxylase activity in human hepatocytes, which is consistent with PF-06282999-dose dependent decreases in mean maximal plasma concentrations (Cmax) and area under the plasma concentration time curve (AUC) of midazolam in humans following 14-day treatment with PF-06282999. 2. In the present study, the biochemical mechanism(s) of CYP3A4 induction by PF-06282999 was studied. Incubations in reporter cells indicated that PF-06282999 selectively activated human pregnane X receptor (PXR). Treatment of human HepaRG cells with PF-06282999 led to ∼14-fold induction in CYP3A4 mRNA and 5-fold increase in midazolam-1'-hydroxylase activity, which was nullified in PXR-knock out HepaRG cells. TaqMan® gene expression analysis of human hepatocytes treated with PF-06282999 and the prototypical PXR agonist rifampin demonstrated increases in mRNA for CYP3A4 and related CYPs that are regulated by PXR. 3. Docking studies using a published human PXR crystal structure provided insights into the molecular basis for PXR activation by PF-06282999. Implementation of PXR transactivation assays in a follow-on discovery campaign should aid in the identification of back-up compounds devoid of PXR activation and CYP3A4 induction liability.


Subject(s)
Acetamides/pharmacology , Cytochrome P-450 CYP3A/biosynthesis , Peroxidase/metabolism , Pyrimidinones/pharmacology , Receptors, Steroid/metabolism , Acetamides/chemistry , Cell Line , Constitutive Androstane Receptor , Cytochrome P-450 CYP3A/genetics , Enzyme Induction/drug effects , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Pregnane X Receptor , Protein Binding/drug effects , Protein Domains , Pyrimidinones/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/chemistry , Transcriptional Activation/drug effects
6.
Drug Metab Dispos ; 45(5): 501-511, 2017 05.
Article in English | MEDLINE | ID: mdl-28254951

ABSTRACT

The propensity for CYP3A4 induction by 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999), an irreversible inactivator of myeloperoxidase, was examined in the present study. Studies using human hepatocytes revealed moderate increases in CYP3A4 mRNA and midazolam-1'-hydroxylase activity in a PF-06282999 dose-dependent fashion. At the highest tested concentration of 300 µM, PF-06282999 caused maximal induction in CYP3A4 mRNA and enzyme activity ranging from 56% to 86% and 47% t0 72%, respectively, of rifampicin response across the three hepatocyte donor pools. In a clinical drug-drug interaction (DDI) study, the mean midazolam Cmax and area under the curve (AUC) values following 14-day treatment with PF-06282999 decreased in a dose-dependent fashion with a maximum decrease in midazolam AUC0-inf and Cmax of ∼57.2% and 41.1% observed at the 500 mg twice daily dose. The moderate impact on midazolam pharmacokinetics at the 500 mg twice daily dose of PF-06282999 was also reflected in statistically significant changes in plasma 4ß-hydroxycholesterol/cholesterol and urinary 6ß-hydroxycortisol/cortisol ratios. Changes in plasma and urinary CYP3A4 biomarkers did not reach statistical significance at the 125 mg three times daily dose of PF-06282999, despite a modest decrease in midazolam systemic exposure. Predicted DDI magnitude based on the in vitro induction parameters and simulated pharmacokinetics of perpetrator (PF-06282999) and victim (midazolam) using the Simcyp (Simcyp Ltd., Sheffield, United Kingdom) population-based simulator were in reasonable agreement with the observed clinical data. Since the magnitude of the 4ß-hydroxycholesterol or 6ß-hydroxycortisol ratio change was generally smaller than the magnitude of the midazolam AUC change with PF-06282999, a pharmacokinetic interaction study with midazolam ultimately proved important for assessment of DDI via CYP3A4 induction.


Subject(s)
Acetamides/pharmacology , Cytochrome P-450 CYP3A/biosynthesis , Enzyme Inhibitors/pharmacology , Pyrimidinones/pharmacology , Acetamides/pharmacokinetics , Adult , Cells, Cultured , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Enzyme Induction/drug effects , Enzyme Inhibitors/pharmacokinetics , Female , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Male , Middle Aged , Peroxidase/antagonists & inhibitors , Pyrimidinones/pharmacokinetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Young Adult
7.
PLoS One ; 11(9): e0162088, 2016.
Article in English | MEDLINE | ID: mdl-27583684

ABSTRACT

CONCLUSIONS: Our results confirmed the more aggressive behavior of PSRCC compared to MBC. This tumor is frequently associated with more frequent lymphatic metastasis, higher Ki67 labeling index, more advanced stage disease as well as simultaneous vimentin upregulation and E-cadherin downregulation. Different management guidelines should be considered for the two types.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Carcinoma, Signet Ring Cell/diagnosis , Mucins/metabolism , Adult , Aged , Breast Neoplasms/pathology , Carcinoma, Signet Ring Cell/metabolism , Carcinoma, Signet Ring Cell/pathology , Epithelial-Mesenchymal Transition , Humans , Lymphatic Metastasis , Middle Aged , Neoplasm Staging , Prognosis , Retrospective Studies
8.
Pathol Res Pract ; 211(8): 570-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26008780

ABSTRACT

This study aimed to explore the effects of recombinant human erythropoietin (rhEPO) on the growth of human breast cancer MDA-MB-231 cells in nude mice, and investigate its functions in regulating tumor growth, angiogenesis and apoptosis. A tumor-bearing nude mice model was established by subcutaneous injection of human breast cancer MDA-MB-231 cells. Two weeks later, the mice were randomly divided into four groups (n=6 for each group): negative control group, rhEPO group, EPO antibody group and EPO+EPO antibody group. Drugs were administered to the corresponding mice once every 3 days for five times. The size and weight of tumors were measured after the mice were sacrificed by cervical dislocation. The expression levels of EPO/EPOR, TNF-α, IL-10, and Bcl-2 in the tumor tissues were determined using RT-PCR and Western blot. The microvessel density (MVD) and expression of VEGF in the tumors were detected using immunohistochemistry. TUNEL assay was used to determine apoptosis in tumors. Results show that rhEPO significantly promoted the growth of MDA-MB-231 cells in nude mice (P<0.05). Compared with the negative control group, the expression levels of EPO, EPOR, TNF-α, IL-10, and VEGF, as well as the MVD values, were significantly elevated in the rhEPO group. However, the apoptotic index was significantly reduced (P<0.05). The ability of rhEPO to promote tumor growth may be associated with its functions in promoting microvessel formation and inhibiting tumor cell apoptosis.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/pathology , Erythropoietin/pharmacology , Neovascularization, Pathologic/metabolism , Animals , Breast Neoplasms/blood supply , Breast Neoplasms/drug therapy , Cell Line, Tumor , Disease Progression , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Microvessels/drug effects , Recombinant Proteins/pharmacology , Vascular Endothelial Growth Factor A/metabolism
9.
Toxicol Sci ; 126(1): 114-27, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22166485

ABSTRACT

Safety attrition of drugs during preclinical development as well as in late-stage clinical trials continues to be a challenge for the pharmaceutical industry for patient welfare and financial reasons. Hepatic, cardiac, and nephrotoxicity remain the main reasons for compound termination. In recent years, efforts have been made to identify such liabilities earlier in the drug development process, through utilization of in silico and cytotoxicity models. Several publications have aimed to predict specific organ toxicities. For example, two large-scale evaluations of hepatotoxic compounds have been conducted. In contrast, only small cardiotoxic and nephrotoxic compound sets have been evaluated. Here, we investigated the utility of hepatic-, cardiac-, and kidney-derived cell lines to (1) accurately predict cytotoxicity and (2) to accurately predict specific organ toxicities. We tested 273 hepatotoxic, 191 cardiotoxic, and 85 nephrotoxic compounds in HepG2 (hepatocellular carcinoma), H9c2 (embryonic myocardium), and NRK-52E (kidney proximal tubule) cells for their cytotoxicity. We found that the majority of compounds, regardless of their designated organ toxicities, had similar effects in all three cell lines. Only approximately 5% of compounds showed differential toxicity responses in the cell lines with no obvious correlation to the known in vivo organ toxicity. Our results suggest that from a general screening perspective, different cell lines have relatively equal value in assessing general cytotoxicity and that specific organ toxicity cannot be accurately predicted using such a simple approach. Select organ toxicity potentially results from compound accumulation in a particular tissue, cell types within organs, metabolism, and off-target effects. Our analysis, however, demonstrates that the prediction can be improved significantly when human C(max) values are incorporated.


Subject(s)
Cardiotoxins/pharmacology , Chemical and Drug Induced Liver Injury , Drugs, Investigational/adverse effects , Heart/drug effects , Kidney/drug effects , Liver/drug effects , Renal Insufficiency/chemically induced , Animals , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Drugs, Investigational/pharmacology , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Organ Specificity , Prescription Drugs/adverse effects , Prescription Drugs/pharmacology , Rats
10.
Bioorg Med Chem Lett ; 21(9): 2725-31, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21183342

ABSTRACT

The design of drugs with selective tissue distribution can be an effective strategy for enhancing efficacy and safety, but understanding the translation of preclinical tissue distribution data to the clinic remains an important challenge. As part of a discovery program to identify next generation liver selective HMG-CoA reductase inhibitors we report the identification of (3R,5R)-7-(4-((3-fluorobenzyl)carbamoyl)-5-cyclopropyl-2-(4-fluorophenyl)-1H-imidazol-1-yl)-3,5-dihydroxyheptanoic acid (26) as a candidate for treating hypercholesterlemia. Clinical evaluation of 26 (PF-03491165), as well as the previously reported 2 (PF-03052334), provided an opportunity for a case study comparison of the preclinical and clinical pharmacokinetics as well as pharmacodynamics of tissue targeted HMG-CoA reductase inhibitors.


Subject(s)
Drug Discovery , Heptanoic Acids/chemical synthesis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Hypercholesterolemia/drug therapy , Imidazoles/chemical synthesis , Liver/drug effects , Animals , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Heptanoic Acids/chemistry , Heptanoic Acids/pharmacokinetics , Heptanoic Acids/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Tissue Distribution
11.
J Lipid Res ; 50(3): 546-555, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18845619

ABSTRACT

Lectin-like oxidized LDL (ox-LDL) receptor-1 (LOX-1) is a type-II transmembrane protein that belongs to the C-type lectin family of molecules. LOX-1 acts as a cell surface endocytosis receptor and mediates the recognition and internalization of ox-LDL by vascular endothelial cells. Internalization of ox-LDL by LOX-1 results in a number of pro-atherogenic cellular responses implicated in the development and progression of atherosclerosis. In an effort to elucidate the functional domains responsible for the binding of ox-LDL to the receptor, a series of site-directed mutants were designed using computer modeling and X-ray crystallography to study the functional role of the hydrophobic tunnel present in the LOX-1 receptor. The isoleucine residue (I(149)) sitting at the gate of the channel was replaced by phenylalanine, tyrosine, or glutamic acid to occlude the channel opening and restrict the docking of ligands to test its functional role in the binding of ox-LDL. The synthesis, intracellular processing, and cellular distribution of all mutants were identical to those of wild type, whereas there was a marked decrease in the ability of the mutants to bind ox-LDL. These studies suggest that the central hydrophobic tunnel that extends through the entire LOX-1 molecule is a key functional domain of the receptor and is critical for the recognition of modified LDL.


Subject(s)
Lipoproteins, LDL/metabolism , Scavenger Receptors, Class E/chemistry , Scavenger Receptors, Class E/metabolism , Amino Acid Substitution , Animals , Binding Sites/genetics , CHO Cells , Cloning, Molecular , Cricetinae , Cricetulus , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scavenger Receptors, Class E/genetics , Transfection
12.
J Med Chem ; 51(1): 31-45, 2008 Jan 10.
Article in English | MEDLINE | ID: mdl-18072721

ABSTRACT

In light of accumulating evidence that aggressive LDL-lowering therapy may offer increased protection against coronary heart disease, we undertook the design and synthesis of a novel series of HMG-CoA reductase inhibitors based upon a substituted pyrazole template. Optimizing this series using both structure-based design and molecular property considerations afforded a class of highly efficacious and hepatoselective inhibitors resulting in the identification of (3 R,5 R)-7-[2-(4-fluoro-phenyl)-4-isopropyl-5-(4-methyl-benzylcarbamoyl)-2 H-pyrazol-3-yl]-3,5-dihydroxy-heptanoic (PF-3052334) as a candidate for the treatment of hypercholesterolemia.


Subject(s)
Heptanoic Acids/chemical synthesis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Hypercholesterolemia/drug therapy , Liver/drug effects , Pyrazoles/chemical synthesis , Animals , Cholesterol, LDL/biosynthesis , Cholesterol, LDL/blood , Cricetinae , Guinea Pigs , Hepatocytes/drug effects , Hepatocytes/metabolism , Heptanoic Acids/chemistry , Heptanoic Acids/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , In Vitro Techniques , Liver/metabolism , Male , Mesocricetus , Muscle Cells/drug effects , Muscle Cells/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 18(3): 1151-6, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18155906

ABSTRACT

4-Sulfamoyl pyrroles were designed as novel hepatoselective HMG-CoA reductase inhibitors (statins) to reduce myalgia, a statin-induced adverse effect. The compounds were prepared via a [3+2] cycloaddition of a Münchnone with a sulfonamide-substituted alkyne. We identified compounds with greater selectivity for hepatocytes compared to L6-myocytes than rosuvastatin and atorvastatin. There was an inverse correlation of myocyte potencies and ClogP values. A number of analogs were effective at reducing cholesterol in acute and chronic in vivo models but they lacked sufficient chronic in vivo activity to warrant further development.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Muscle Cells/drug effects , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Animals , Atorvastatin , Combinatorial Chemistry Techniques , Disease Models, Animal , Fluorobenzenes/pharmacology , Hepatocytes/drug effects , Heptanoic Acids/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Mice , Molecular Structure , Pyrimidines/pharmacology , Pyrroles/chemistry , Rosuvastatin Calcium
14.
Bioorg Med Chem Lett ; 17(16): 4531-7, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17574411

ABSTRACT

Using structure-based design, a novel series of conformationally restricted, pyrrole-based inhibitors of HMG-CoA reductase were discovered. Leading analogs demonstrated potent inhibition of cholesterol synthesis in both in vitro and in vivo models and may be useful for the treatment of hypercholesterolemia and related lipid disorders.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Animals , Cholesterol/biosynthesis , Drug Design , Hyperlipidemias/drug therapy , Mice , Molecular Biology , Molecular Structure , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 17(16): 4538-44, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17574412

ABSTRACT

This manuscript describes the design and synthesis of a series of pyrrole-based inhibitors of HMG-CoA reductase for the treatment of hypercholesterolemia. Analogs were optimized using structure-based design and physical property considerations resulting in the identification of 44, a hepatoselective HMG-CoA reductase inhibitor with excellent acute and chronic efficacy in a pre-clinical animal models.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Animals , Cricetinae , Dose-Response Relationship, Drug , Drug Design , Fluorobenzenes , Hyperlipidemias/drug therapy , Liver/drug effects , Models, Molecular , Molecular Structure , Pyrimidines , Rosuvastatin Calcium , Structure-Activity Relationship , Sulfonamides
16.
World J Gastroenterol ; 10(3): 439-42, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14760775

ABSTRACT

AIM: To evaluate the multiple biomarkers of colorectal tumor and their potential usage in early diagnosis of colorectal cancers. METHODS: Multiple biomarkers (DNA contents, AgNOR, PCNA, p53, c-erbB-2) in 10 normal colorectal mucosae, 37 colorectal adenomas and 55 colorectal cancers were analyzed quantitatively in the computed processing imaging system. Discrimination patterns were employed to evaluate the significance of single and multiple indices in diagnosis of colorectal cancers. RESULTS: The mean values of the analyzed parameters increased in order of the normal mucosa, adenoma and adenocarcinoma, and this tendency reflected the progression of colorectal malignancy. The parameters including DNA index, positive rates, densities of AgNOR, c-erbB-2, and p53, shape and density of nucleus were relatively valuable for diagnoses. Then a diagnostic discrimination model was established. The samples were confirmed with the model, the sensitivity rates in cancer group and adenoma group were 96.36% and 89.19%, respectively. The value of proliferating cell nuclear antigen (PCNA) in early diagnosis of colorectal cancers was uncertain. CONCLUSION: The quantitative evaluation of some parameters for colorectal tumor can provide reproducible data for differential diagnosis. The established diagnostic discrimination model may be of clinicopathological value, and can make the early diagnosis of colorectal cancer possible.


Subject(s)
Adenoma/diagnosis , Biomarkers, Tumor/metabolism , Carcinoma/diagnosis , Colorectal Neoplasms/diagnosis , Adenoma/metabolism , Adult , Aged , Aged, 80 and over , Carcinoma/metabolism , Colorectal Neoplasms/metabolism , Diagnosis, Differential , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...