Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1379, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355730

ABSTRACT

Aphidius gifuensis is a parasitoid wasp and primary endoparasitoid enemy of the peach potato aphid, Myzus persicae. Artificially reared, captive wasps of this species have been extensively and effectively used to control populations of aphids and limit crop loss. However, the consequences of large-scale releasing of captive A. gifuensis, such as genetic erosion and reduced fitness in wild populations of this species, remains unclear. Here, we sequence the genomes of 542 A. gifuensis individuals collected across China, including 265 wild and 277 human-intervened samples. Population genetic analyses on wild individuals recovered Yunnan populations as the ancestral group with the most complex genetic structure. We also find genetic signature of environmental adaptation during the dispersal of wild populations from Yunnan to other regions. While comparative genomic analyses of captive wasps revealed a decrease in genetic diversity during long-term rearing, population genomic analyses revealed signatures of natural selection by several biotic (host plants) or abiotic (climate) factors, which support maintenance of the gene pool of wild populations in spite of the introduction of captive wasps. Therefore, the impact of large-scale release is reduced. Our study suggests that A. gifuensis is a good system for exploring the genetic and evolutionary effects of mass rearing and release on species commonly used as biocontrol agents.


Subject(s)
Aphids , Wasps , Humans , Animals , Wasps/genetics , China , Selection, Genetic , Aphids/genetics , Genetic Variation , Host-Parasite Interactions
2.
Heliyon ; 9(6): e17070, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484367

ABSTRACT

Although mitochondrial gene rearrangement has been observed in many insect lineages, little is known about how it affects mitochondrial gene transcription. To address this question, we first constructed a quantitative transcription map for Aphidius gifuensis, a species of parasitoid wasp known to have a highly rearranged mitochondrial genome (mitogenome) and two potential control regions (CRs). Based on this transcription map, we assessed the models of the mitochondrial transcription and post-transcription cleavage. We found that the J and N strand of this mitogenome differ significantly in transcriptional regulation. On the J strand, we found two transcription initiation sites (TISs), five transcription termination sites (TTSs), and six polycistronic primary transcripts whereas only one TIS, one TTS and one polycistronic primary transcript can be found on the N strand. Most of the non-coding regions of both strands were transcribed into primary transcripts and cleaved after transcription. The proposed mode of transcription of A. gifuensis was similar to that of Drosophila, a model organism with no gene rearrangement. And two rearranged gene clusters (trnI-CR1-trnM-CR2-trnQ and trnW-trnY-trnC) seemed to have little effects on the mode of transcription. In addition, our results revealed the presence of TISs in CR1 and CR2, implying that both CRs maybe required for transcriptional regulation. Analysis of the post-transcriptional cleavage process showed that there were both "forward cleavage" and "reverse cleavage" models in A. gifuensis, and more than one way of cleavages were found in three regions. The incomplete transcripts suggested that the direction of mitochondrial RNA degradation was from 5' to 3' end and supported the view of polyadenylation-dependent RNA degradation. Our study provides insights into the transcriptional and post-transcriptional regulation processes of highly rearranged insect mitogenomes.

3.
Commun Chem ; 6(1): 139, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402835

ABSTRACT

The collision cross section (CCS) values derived from ion mobility spectrometry can be used to improve the accuracy of compound identification. Here, we have developed the Structure included graph merging with adduct method for CCS prediction (SigmaCCS) based on graph neural networks using 3D conformers as inputs. A model was trained, evaluated, and tested with >5,000 experimental CCS values. It achieved a coefficient of determination of 0.9945 and a median relative error of 1.1751% on the test set. The model-agnostic interpretation method and the visualization of the learned representations were used to investigate the chemical rationality of SigmaCCS. An in-silico database with 282 million CCS values was generated for three different adduct types of 94 million compounds. Its source code is publicly available at https://github.com/zmzhang/SigmaCCS . Altogether, SigmaCCS is an accurate, rational, and off-the-shelf method to directly predict CCS values from molecular structures.

4.
Appl Microbiol Biotechnol ; 107(13): 4217-4232, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209161

ABSTRACT

Starch and cellulose are the fundamental components of tobacco, while their excessive content will affect the quality of tobacco. Enzymatic treatment with different enzymes is a promising method to modulate the chemical composition and improve the sensory quality of tobacco leaves. In this study, enzymatic treatments, such as amylase, cellulase, and their mixed enzymes, were used to improve tobacco quality, which could alter the content of total sugar, reducing sugar, starch, and cellulose in tobacco leaves. The amylase treatment changed surface structure of tobacco leaves, increased the content of neophytadiene in tobacco by 16.48%, and improved the total smoking score of heat-not-burn (HnB) cigarette products by 5.0 points compared with the control. The Bacillus, Rubrobacter, Brevundimonas, Methylobacterium, Stenotrophomonas, Acinetobacter, Pseudosagedia-chlorotica, and Sclerophora-peronella were found to be significant biomarkers in the fermentation process by LEfSe analysis. The Basidiomycota and Agaricomycetes were significantly correlated with aroma and flavor, taste, and total score of HnB. The results showed that microbial community succession occurred due to amylase treatment, which promoted the formation of aroma compounds, and regulated the chemical composition of tobacco, and improved tobacco quality during tobacco fermentation. This study provides a method for enzymatic treatment to upgrade the quality of tobacco raw materials, thereby improving the quality of HnB cigarettes, and the potential mechanism is also revealed by chemical composition and microbial community analysis. KEY POINTS: Enzymatic treatment can change the chemical composition of tobacco leaves. The microbial community was significantly affected by enzymatic treatment. The quality of HnB cigarettes was significantly improved by amylase treatment.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Tobacco Products/analysis , Fermentation , Hot Temperature
5.
Front Microbiol ; 14: 1179087, 2023.
Article in English | MEDLINE | ID: mdl-37213510

ABSTRACT

Eight Gram-negative, aerobic, motile with paired polar flagella and rod-shaped bacteria were isolated from six tobacco fields in Yunnan, PR China. 16S rRNA gene sequence analysis revealed that all the strains belonged to the genus Ralstonia. Among them, strain 22TCCZM03-6 had an identical 16S rRNA sequence to that of R. wenshanensis 56D2T, and the other strains were closely related to R. pickettii DSM 6297T (98.34­99.86%), R. wenshanensis 56D2T (98.70­99.64%), and R. insidiosa CCUG 46789T (97.34­98.56%). Genome sequencing yielded sizes ranging from 5.17 to 5.72 Mb, with overall G + C contents of 63.3­64.1%. Pairwise genome comparisons showed that strain 22TCCZM03-6 shared average nucleotide identity (ANI) and digital DNA­DNA hybridization (dDDH) values above the species cut-off with R. wenshanensis 56D2T, suggesting that strain 22TCCZM03-6 is a special strain of the R. wenshanensis. Five strains, including 21MJYT02-10T, 21LDWP02-16, 22TCJT01-1, 22TCCZM01-4, and 22TCJT01-2, had ANI values >95% and dDDH values >70% when compared with each other. These five strains had ANI values of 73.32­94.17% and dDDH of 22.0­55.20% with the type strains of the genus Ralstonia individually, supporting these five strains as a novel species in the genus Ralstonia. In addition, strains 21YRMH01-3T and 21MJYT02-11T represent two independent species. They both had ANI and dDDH values below the thresholds for species delineation when compared with the type species of the genus Ralstonia. In strains 21YRMH01-3T and 21MJYT02-10T, the main fatty acids were summed features 3, 8, and C16:0; however, strain 21MJYT02-11T contained C16:0, cyclo-C17:0, and summed features 3 as major fatty acids. The main polar lipids, including diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine, were identified from strains 21YRMH01-3T, 21MJYT02-10T, and 21MJYT02-11T. The ubiquinones Q-7 and Q-8 were also detected in these strains, with Q-8 being the predominant quinone. Based on the above data, we propose that the eight strains represent one known species and three novel species in the genus Ralstonia, for which the names Ralstonia chuxiongensis sp. nov., Ralstonia mojiangensis sp. nov., and Ralstonia soli sp. nov. are proposed. The type strains are 21YRMH01-3T (=GDMCC 1.3534T = JCM 35818T), 21MJYT02-10T (=GDMCC 1.3531T = JCM 35816T), and 21MJYT02-11T (=GDMCC 1.3532T = JCM 35817T), respectively.

6.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36282564

ABSTRACT

Three Gram-stain-negative, motile, with amphilophotrichous flagella, and rod-shaped bacteria (LJ1, LJ2T and LJ3) were isolated from lower leaves with black spots on flue-cured tobacco in Yunnan, PR China. The results of phylogenetic analysis based on 16S rRNA gene sequences indicate that all the strains from tobacco were closely related to the type strains of the Pseudomonas syringae group within the P. fluorescens lineage and LJ2T has the highest sequence identities with P. cichorii DSM 50259T (99.92 %), P. capsici Pc19-1T (99.67 %) and P. ovata F51T (98.94 %) . The 16S rRNA gene sequence identities between LJ2T and other members of the genus Pseudomonas were below 98.50%. The average nucleotide identity by blast (ANIb) values between LJ2T and P. cichorii DSM 50259T, P. capsici Pc19-1T and P. ovata F51T were less than 95 %, and the in silico DNA-DNA hybridization (isDDH) values (yielded by formula 2) were less than 70 %. The major fatty acids were C16  :  1ω7c and/or C16  :  1ω6c (summed feature 3), C16  :  0 and C18  :  1ω7c and/or C18  :  1ω6c (summed feature 8). The polar lipids profile of LJ2T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids and one unidentified glycolipid. The predominant respiratory quinone was Q-9. The DNA G+C content of LJ2T was 58.4 mol%. On the basis of these data, we concluded that LJ2T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas lijiangensis sp. nov. is proposed. The type strain of Pseudomonas lijiangensis sp. nov. is LJ2T (=CCTCC AB 2021465T=GDMCC 1.2884T=JCM 35177T).


Subject(s)
Phosphatidylethanolamines , Pseudomonas , RNA, Ribosomal, 16S/genetics , Phylogeny , Base Composition , Nicotiana , DNA, Bacterial/genetics , Cardiolipins , Bacterial Typing Techniques , Fatty Acids/chemistry , Genes, Bacterial , Sequence Analysis, DNA , China , Phospholipids , Phosphatidylcholines , Glycolipids , Quinones , Nucleotides
7.
ACS Omega ; 7(36): 32496-32511, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36120045

ABSTRACT

Lysine acetylation (Kac), a reversible PTM, plays an essential role in various biological processes, including those involving metabolic pathways, pathogen resistance, and transcription, in both prokaryotes and eukaryotes. TMV, the major factor that causes the poor quality of Solanaceae crops worldwide, directly alters many metabolic processes in tobacco. However, the extent and function of Kac during TMV infection have not been determined. The validation test to detect Kac level and viral expression after TMV infection and Nicotinamide (NAM) treatment clarified that acetylation was involved in TMV infection. Furthermore, we comprehensively analyzed the changes in the proteome and acetylome of TMV-infected tobacco (Nicotiana benthamiana) seedlings via LC-MS/MS in conjunction with highly sensitive immune-affinity purification. In total, 2082 lysine-acetylated sites on 1319 proteins differentially expressed in response to TMV infection were identified. Extensive bioinformatic studies disclosed changes in acetylation of proteins engaged in cellular metabolism and biological processes. The vital influence of Kac in fatty acid degradation and alpha-linolenic acid metabolism was also revealed in TMV-infected seedlings. This study first revealed Kac information in N. benthamiana under TMV infection and expanded upon the existing landscape of acetylation in pathogen infection.

8.
BMC Genomics ; 23(1): 621, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038823

ABSTRACT

BACKGROUND: Lysine 2-hydroxyisobutyrylation (Khib) is a novel and conserved post-translational modification (PTM). Frankliniella occidentalis are economically important agricultural pests globally and also notorious for vectoring destructive plant viruses. To better study the disease transmission mechanism of F. occidentalis, it is necessary to conduct in-depth analysis of it. So far, no Khib modification of insects has been reported. RESULTS: In this study, a proteome-wide analysis of Khib modifications in F. occidentalis was analyzed for the first time through the combination of high performance liquid chromatography fractionation technology and 2-hydroxyisobutyrylated peptide enrichment and other advanced technologies, 4093 Khib sites were identified on 1125 modified proteins. Bioinformatics and functional enrichment analyses showed that Khib-modified proteins were significantly enriched in many cell compartments and pathways, especially related to various cellular components and biological processes, and were more concentrated in ribosomes and proteasome subunits, involved in energy metabolism, protein synthesis and degradation, compared to the other nine species including Japonica rice, Homo sapiens, P. patens, Botrytis, Ustilaginoidea virens, Saccharomyces cerevisiae, T. gondii, C. albicans, and F. oxysporum. And Khib sites on virus-interacting insect proteins were discovered for the first time, such as cyclophilin and endoCP-GN. CONCLUSIONS: After three repeated experiments, we found a total of 4093 Khib sites on 1125 proteins. These modified proteins are mainly concentrated in ribosomes and proteasome subunits, and are widely involved in a variety of critical biological activities and metabolic processes of F. occidentalis. In addition, for the first time, Khib modification sites are found on the proteome of F. occidentalis, and these sites could be acted as for the virus interaction, including cyclophilin and endoCP-GN. The global map of 2-hydroxyisobutyrylation in thrips is an invaluable resource to better understand the biological processes of thrips and provide new means for disease control and mitigation of pest damage to crops.


Subject(s)
Lysine , Thysanoptera , Animals , Cyclophilins , Humans , Lysine/metabolism , Proteasome Endopeptidase Complex , Proteome/metabolism
9.
Plant Dis ; 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35971260

ABSTRACT

Tobacco is one of the most significant non-food cash crops (Lu et al. 2020). In March 2022, cigar tobacco plants showing characteristic symptoms of vascular discoloration, stem rotting, leaf wilting and rotting were observed in Tengchong city (N 25°3'26″, E 98°25'6″) of Yunnan province, China (Fig. S1). The disease incidence was about 5% on cultivar Yunxue 6 in a 33-ha field. Infected stems were collected from Tengchong for pathogen isolation and 16S rDNA sequence analysis was performed as previously described (Lu et al. 2021). Sequence analysis showed that tobacco isolates (GenBank accession numbers: ON795108, ON795107 and ON795106) had an identical sequence with that of the species type strain of Pectobacterium versatile CFBP 6051T and shared the sequence identities of 99.55% and 99.47% with P. carotovorum DSM 30168T and P. parvum s0421T, respectively. Furthermore, phylogenetic analysis showed that tobacco strains were clustered with Pectobacterium versatile CFBP 6051T (Fig. S2a). In API assays, strain 22TC1 was positive for ß-galactosidase activity, reduction of nitrates to nitrites, fermentation of glucose, hydrolysis of esculin and gelatin, assimilation of D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetylglucosamine, malic acid and trisodium citrate; positive for the enzymatic substrates of alkaline phosphatase, leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, ß-galactosidase and α-glucosidase. Furthermore, the average nucleotide identity (ANI) analysis (Richter et al. 2015) showed that strain 22TC1 (GenBank accession number: JAMWYQ000000000) had the highest ANIb score of 96.76% and ANIm value of 97.19% with P. versatile CFBP 6051T. Similarly, in silico DNA-DNA hybridization (isDDH) value was 74.5% compared to P. versatile CFBP 6051T, isDDH values were 35.5-63.7% with the other Pectobacterium species, which below the 70% threshold value for species delineation (Meier-Kolthoff et al. 2021). The phylogenomic analysis also showed that strain 22TC1 was clustered with the species type strain of P. versatile CFBP 6051T. For pathogenicity tests, cell suspension with ten-fold dilution (approx. 1 x 108 CFU/ml) was injected into the leaf axils of two 2-month-old tobacco stems (cv. Yunyan 87). As a control, tobacco seedlings were inoculated with sterile distilled water. The plants were sealed in plastic bags and maintained in a growth chamber at 28°C for 2 d. The symptoms of water-soaked decay were observed within 24 h of inoculation. Whole-plant decay was at 2 days after injection. No symptoms were developed in the controls. Reisolation was performed on diseased stems and the identity of isolated bacteria was confirmed by PCR and sequencing of 16S rRNA. Similar results were obtained in two independent experiments. Based on the above-described data, the causal pathogen of stem rot on cigar tobacco in Tengchong was identified as P. versatile. To our knowledge, this is the first time that P. versatile is found to cause stem rot on tobacco. Pectobacterium species have been reported to cause seed-borne diseases on tobacco seedlings in the floating tray system and soil-borne diseases in tobacco fields (Wang et al. 2017; Xia and Mo 2007). Therefore, studying the possible transmission of the P. versatile to tobacco plants is necessary.

10.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Article in English | MEDLINE | ID: mdl-36748420

ABSTRACT

A Gram-negative, aerobic, motile with paired polar flagella and rod-shaped bacterium strain (56D2T) was isolated from tobacco planting soil in Yunnan, PR China. Major fatty acids were C16  :  1 ω7c (summed feature 3), C16  :  0 and C18  :  1 ω7c (summed feature 8). The polar lipid profile of strain 56D2T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid and one unidentified glycolipid. Moreover, strain 56D2T contained ubiquinone Q-8 as the sole respiratory quinone. 16S rRNA gene sequence analysis showed that strain 56D2T was closely related to members of the genus Ralstonia and the two type strains with the highest sequence identities were R. mannitolilytica LMG 6866T (98.36 %) and R. pickettii K-288T (98.22 %). The 16S rRNA gene sequence identities between strain 56D2T and other members of the genus Ralstonia were below 98.00 %. Genome sequencing revealed a genome size of 5.87 Mb and a G+C content of 63.7 mol%. The average nucleotide identity values between strain 56D2T and R. pickettii K-288T, R. mannitolilytica LMG 6866 T and R. insidiosa CCUG 46789T were less than 95 %, and the in silico DNA-DNA hybridization values (yielded by formula 2) were less than 70 %. Based on these data, we conclude that strain 56D2T represents a novel species of the genus Ralstonia, for which the name Ralstonia wenshanensis sp. nov. is proposed. The type strain of Ralstonia wenshanensis sp. nov. is 56D2T (=CCTCC AB 2021466T=GDMCC 1.2886T=JCM 35178T).


Subject(s)
Fatty Acids , Phospholipids , Fatty Acids/chemistry , Nicotiana , Ralstonia/genetics , RNA, Ribosomal, 16S/genetics , China , Sequence Analysis, DNA , Base Composition , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Bacteria/genetics
11.
ACS Omega ; 6(49): 33953-33960, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926942

ABSTRACT

Resistant genes as an effective strategy to antivirus of plants are at the core of sustainability efforts. We use the antiviral protein major latex protein 28 (NbMLP28 plasmid) and N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) designated as the HACC/NbMLP28 complex as protective gene delivery vectors to prepare nanonucleic acid drugs. The maximum drug loading capacity of HACC was 4. The particle size of HACC/NbMLP28 was measured by transmission electron microscopy and found to be approximately 40-120 nm, the particle dispersion index (PDI) was 0.448, and the ζ-potential was 22.3 mV. This facilitates its ability to deliver particles. Different controls of laser scanning confocal experiments verified the effective expression of NbMLP28 and the feasibility of nanodelivery. The optimal ratio of HACC/plasmid was 2:1. Finally, the nanoparticle/plasmid complex was tested for its ability to control diseases and was found to significantly improve resistance to three viruses. The enhanced resistance was particularly notable 4 days after inoculation. Taken together, these results indicate that HACC/NbMLP28 is a promising tool to treat plant viruses. To the best of our knowledge, this is the first study that successfully delivered and expressed antiviral protein particles in plants. This gene delivery system can effectively load antiviral plasmids and express them in plant leaves, significantly affecting the plant resistance of three RNA viruses.

12.
ACS Omega ; 6(25): 16391-16401, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34235310

ABSTRACT

Myzus persicae is one of the most important economic pests of cultivated crops. In the present study, we used an integrated approach involving high-performance liquid chromatography fractionation, affinity enrichment, and mass spectrometry-based proteomics to carry out a comprehensive proteomic analysis of lysine crotonylation in M. persicae. Altogether, 7530 lysine crotonylation sites were identified in 2452 protein groups. Intensive bioinformatic analyses were then carried out to annotate those lysine crotonylated targets identified in terms of Gene Ontology annotation, domain annotation, subcellular localization, Kyoto Encyclopedia of Genes and Genomes pathway annotation, functional cluster analysis, etc. Analysis results showed that lysine-crotonylated proteins were involved in many biological processes, such as the amino acid metabolism, aminoacyl-tRNA biosynthesis, spliceosomes, ribosomes, and so forth. Notably, the interaction network showed that there were 199 crotonylated proteins involved in the amino acid metabolism and numerous crotonylation targets associated with fatty acid biosynthesis and degradation. The results provide a system-wide view of the entire M. persicae crotonylome and a rich data set for functional analysis of crotonylated proteins in this economically important pest, which marks an important beginning for the further research.

13.
Phytopathology ; 111(12): 2392-2395, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34100304

ABSTRACT

Here, we present the complete genome sequence and annotation of Ralstonia syzygii subsp. indonesiensis strain LLRS-1, which caused bacterial wilt on flue-cured tobacco in Yunnan Province, southwest China. Strain LLRS-1 is the first R. syzygii strain identified to be pathogenic to tobacco in China. The completely assembled genome of strain LLRS-1 consists of a 3,648,314-bp circular chromosome and a 2,046,405-bp megaplasmid with 5,190 protein-coding genes, 55 transfer RNAs, 28 small RNAs, 3 structural RNAs (5S, 16S, and 23S), and a G+C content of 67.05%.


Subject(s)
Nicotiana , Ralstonia solanacearum , China , Phylogeny , Plant Diseases , Ralstonia
14.
Molecules ; 26(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063107

ABSTRACT

Untargeted metabolomics based on liquid chromatography coupled with mass spectrometry (LC-MS) can detect thousands of features in samples and produce highly complex datasets. The accurate extraction of meaningful features and the building of discriminant models are two crucial steps in the data analysis pipeline of untargeted metabolomics. In this study, pure ion chromatograms were extracted from a liquor dataset and left-sided colon cancer (LCC) dataset by K-means-clustering-based Pure Ion Chromatogram extraction method version 2.0 (KPIC2). Then, the nonlinear low-dimensional embedding by uniform manifold approximation and projection (UMAP) showed the separation of samples from different groups in reduced dimensions. The discriminant models were established by extreme gradient boosting (XGBoost) based on the features extracted by KPIC2. Results showed that features extracted by KPIC2 achieved 100% classification accuracy on the test sets of the liquor dataset and the LCC dataset, which demonstrated the rationality of the XGBoost model based on KPIC2 compared with the results of XCMS (92% and 96% for liquor and LCC datasets respectively). Finally, XGBoost can achieve better performance than the linear method and traditional nonlinear modeling methods on these datasets. UMAP and XGBoost are integrated into KPIC2 package to extend its performance in complex situations, which are not only able to effectively process nonlinear dataset but also can greatly improve the accuracy of data analysis in non-target metabolomics.


Subject(s)
Discriminant Analysis , Machine Learning , Metabolomics , Models, Theoretical , Tandem Mass Spectrometry , Algorithms , Chromatography, Liquid , Colonic Neoplasms/diagnosis , Data Analysis , Humans , Male , Middle Aged , Principal Component Analysis , ROC Curve
15.
Virology ; 539: 114-120, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31710910

ABSTRACT

Like their animal-infecting counterparts, plant bunyaviruses use capped RNA leaders cleaved from host cellular mRNAs to prime viral genome transcription in a process called cap-snatching, but in vivo systems to investigate the details of this process are lacking for them. Here, we report that Rice stripe tenuivirus (RSV) and Tomato spotted wilt tospovirus (TSWV) cleave capped RNA leaders from mRNAs transiently expressed by agroinfiltration, which makes it possible to artificially deliver defined cap donors to the two plant bunyaviruses with unprecedented convenience. With this system, some ideas regarding how plant bunyaviruses select and use capped RNA leaders can be tested easily. We were also able to obtain clear evidence that the capped RNA leaders selected by TSWV are generally longer than those by RSV. TSWV frequently uses the prime-and-realign mechanism in transcription primed by capped RNA leaders shorter than a certain length, like that has been demonstrated recently for RSV.


Subject(s)
Bunyaviridae/genetics , RNA Caps/genetics , RNA Caps/metabolism , 3' Untranslated Regions , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Base Pairing , Bunyaviridae/metabolism , Genome, Viral , Plant Leaves/virology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Species Specificity , Tenuivirus/genetics , Tenuivirus/metabolism , Nicotiana/virology , Tospovirus/genetics , Tospovirus/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...