Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 217: 114663, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36150327

ABSTRACT

The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It assesses contagiousness directly, the sample is easy and comfortable to obtain, sampling can be standardized, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an RT-qPCR molecular assay to detect SARS-CoV-2 shedding. Our portable, silicon impactor allowed for the efficient capture (>85%) of respiratory particles down to 300 nm without the need for additional equipment. We demonstrate using both conventional off-chip and in-situ PCR directly on the silicon chip that sampling subjects' breath in less than a minute yields sufficient viral RNA to detect infections as early as standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test remains positive during the first week but is the first to consistently report a negative result, putatively signalling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Humans , Longitudinal Studies , RNA, Viral/analysis , Respiratory Aerosols and Droplets , SARS-CoV-2 , Silicon
2.
Biomed Opt Express ; 11(4): 1808-1818, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32341849

ABSTRACT

In this paper, we consider the task of detecting platelets in images of diluted whole blood taken with a lens-free microscope. Despite having several advantages over traditional microscopes, lens-free imaging systems have the significant challenge that the resolution of the system is typically limited by the pixel dimensions of the image sensor. As a result of this limited resolution, detecting platelets is very difficult even by manual inspection of the images due to the fact that platelets occupy just a few pixels of the reconstructed image. To address this challenge, we develop an optical model of diluted whole blood to generate physically realistic simulated holograms suitable for training machine learning models in a supervised manner. We then use this model to train a convolutional neural network (CNN) for platelet detection and validate our approach by developing a novel optical configuration which allows collecting both lens-free and fluorescent microscopy images of the same field of view of diluted whole blood samples with fluorescently labeled platelets.

SELECTION OF CITATIONS
SEARCH DETAIL
...