Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398846

ABSTRACT

Dietary polyphenols are reported to alleviate colitis by interacting with gut microbiota which plays an important role in maintaining the integrity of the intestinal barrier. As a type of dietary polyphenol, whether ligustroside (Lig) could alleviate colitis has not been explored yet. Here, we aimed to determine if supplementation of ligustroside could improve colitis. We explored the influence of ligustroside intake with different dosages on colitis induced with dextran sulfate sodium (DSS). Compared to the DSS group, supplementation of ligustroside could reduce body weight (BW) loss, decrease disease activity indices (DAI), and relieve colon damage in colitis mice. Furthermore, ligustroside intake with 2 mg/kg could decrease proinflammatory cytokine concentrations in serum and increase immunoglobulin content and antioxidant enzymes in colon tissue. In addition, supplementation of ligustroside (2 mg/kg) could reduce mucus secretion and prevent cell apoptosis. Also, changes were revealed in the bacterial community composition, microbiota functional profiles, and intestinal metabolite composition following ligustroside supplementation with 2 mg/kg using 16S rRNA sequencing and non-targeted lipidomics analysis. In conclusion, the results showed that ligustroside was very effective in preventing colitis through reduction in inflammation and the enhancement of the intestinal barrier. Furthermore, supplementation with ligustroside altered the gut microbiota and lipid composition of colitis mice.


Subject(s)
Colitis , Glucosides , Pyrans , Mice , Animals , Dextran Sulfate/toxicity , RNA, Ribosomal, 16S/genetics , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Intestines , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism
2.
J Control Release ; 359: 33-51, 2023 07.
Article in English | MEDLINE | ID: mdl-37211284

ABSTRACT

Poor tumor penetration is the most significant barrier to the clinical translation of nanomedicines. Despite numerous studies, little is known about how the physicochemical properties and tumor-associated environments impact liposome intratumoral penetration from a multi-factorial perspective. Thus, we developed a set of model liposomes to explore the laws of their intratumoral penetration. Our comprehensive analysis revealed that zeta potential, membrane fluidity, and size of liposomes could influence their penetration in the peripheral, intermediate, or central areas of the tumor, respectively. Moreover, protein corona and stromal cells primarily impeded liposome penetration in the tumor periphery, while the vascular vessels had a similar effect in the tumor center. Our results also revealed a non-monotonic relationship, indicating that the best condition for a single factor may not necessarily be the optimal choice when considering all the factors. The preferred size, zeta potential, and membrane fluidity for excellent tumor penetration are within the ranges of 52-72 nm, 16-24 mV, and 230-320 mp, respectively. Our study provides a comprehensive understanding of the influence of physicochemical properties and tumor-associated environments on liposome intratumoral penetration, offering explicit guidance for the precise design and rational optimization of anti-tumor liposomes.


Subject(s)
Liposomes , Neoplasms , Humans , Liposomes/metabolism , Neoplasms/drug therapy , Membrane Fluidity , Nanomedicine
3.
Biomater Sci ; 11(1): 263-277, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36440740

ABSTRACT

Dendritic cells (DCs) that can prime antitumor responses show great potential in tumor immunotherapy, whereas the unsatisfactory effect which can be ascribed in part to the high expression of inhibitory cytokines, such as the suppressor of cytokine signaling 1 (SOCS1), restricts their application. Thus, silencing these genes in DCs is essential for DC-based therapy. However, safe and effective delivery of siRNA to DCs still faces challenges. Herein, we designed single-component lipid nanoparticles comprising a solely cationic lipid (OA2) for introducing siRNA into mouse DCs in order to inhibit the immunosuppressive gene and boost the effector responses of DC-based therapy. Compared to other multi-component lipid nanoparticles, single-component lipid nanoparticles are theoretically easy-to-control and detective, which is beneficial for future translation. We showed that the application of OA2 lipid nanoparticles significantly downregulated the expression of SOCS1 in DCs over 50%, compared with the commercial lipofectine2000. Besides, the treatment of OA2 lipid nanoparticles had no influence on the antigen capture of DCs. Thus, we fabricated a SOCS1-downregulated DC vaccine pulsed with Ova antigen and demonstrated that the antigen presentation and pro-inflammatory factor secretion ability of DCs were improved due to the SOCS1 downregulation, leading to an ameliorated immunosuppressive tumor microenvironment and finally exhibiting potent tumor prevention and suppression in B16-Ova tumor-bearing mice. Single-component lipid nanoparticles, which provide an available vector platform for siRNA delivery to primary DCs, appear to be a potent tool to engineer DCs and in turn boost DC-based tumor immunotherapy.


Subject(s)
Neoplasms , Suppressor of Cytokine Signaling Proteins , Animals , Mice , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Immunotherapy , Neoplasms/metabolism , Antigen Presentation , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Dendritic Cells , Mice, Inbred C57BL , Tumor Microenvironment
4.
Adv Healthc Mater ; 11(3): e2101761, 2022 02.
Article in English | MEDLINE | ID: mdl-34811972

ABSTRACT

Circulating tumor cells (CTCs) are reported as the precursor of tumor metastases, implying that stifling CTCs would be beneficial for metastasis prevention. However, challenges remain for the application of therapies that aim at CTCs due to lack of effective CTC-targeting strategy and sensitive therapeutic agents. Herein, a general CTC-intervention strategy based on neutrophil cyto-pharmaceuticals is proposed for suppressing CTC colonization and metastasis formation. Breast cancer 4T1 cells are infused as the mimic CTCs, and 4T1 cells trapped are first elucidated in neutrophil extracellular traps (NETs) expressing high levels of hypoxia-inducible factor-1α (HIF-1α) due to NET formation and thus promoting tumor cell colonization through enhanced migration, invasion and stemness. After verifying HIF-1α as a potential target for metastasis prevention, living neutrophil cyto-pharmaceuticals (CytPNEs) loaded with HIF-1α inhibitor are fabricated to therapeutically inhibit HIF-1α. It is demonstrated that CytPNEs can specially convey the HIF-1α inhibitor to 4T1 cells according to the inflammatory chemotaxis of neutrophils and down-regulate HIF-1α, thereby inhibiting metastasis and prolonging the median survival of mice bearing breast cancer lung metastasis. The research offers a new perspective for understanding the mechanism of CTC colonization, and puts forward the strategy of targeted intervention of CTCs as a meaningful treatment for tumor metastasis.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit , Mice , Neoplasm Metastasis/prevention & control , Neutrophils , Pharmaceutical Preparations
5.
Biomater Sci ; 7(7): 2777-2792, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31041934

ABSTRACT

Cationic liposomes have shown great potential in efficient siRNA delivery, and their positive charge is crucial for tight extracellular siRNA binding, effective intracellular siRNA disassembly and physiological toxicity. Thus, the development of novel cationic lipids with a suitable positive charge is desirable for safe and efficient siRNA delivery. Herein, we fabricated a library of 21 tertiary amine-derived cationic lipids (TA) to achieve a balance between effectiveness and safe siRNA delivery. The screened TA13 liposomes, which consisted of TA13 and helper lipid DOPE at a mole ratio of 1 : 1, readily condensed siRNA to form lipoplexes (TA13 LPs), achieving stronger gene silencing in diverse cells than the commercially available vector Lipo2000. Moreover, the TA13 LPs demonstrated effective in vivo gene silencing and good safety in normal mice. The improved gene silencing efficiency of the TA13 LPs is ascribed to their capability of sequentially conquering the barriers met by in vivo siRNA delivery. Notably, the TA13 LPs delivered ApoB-siRNA and obviously decreased ApoB mRNA expression in the liver and the total cholesterol and low-density lipoprotein in the serum of hypercholesterolemia mice, indicating a potential siRNA therapeutic for hypercholesterolemia treatment. It is anticipated that these novel tertiary amine-based liposomes can provide a simple and widely-used platform for the safe and effective delivery of siRNA, and their structure-activity relationships can aid in the further development of effective cationic lipids.


Subject(s)
Amines/chemistry , Drug Carriers/chemistry , Lipids/chemistry , RNA, Small Interfering/chemistry , Safety , Animals , Drug Carriers/toxicity , Gene Silencing , HeLa Cells , Humans , Hypercholesterolemia/genetics , Hypercholesterolemia/therapy , Lipids/toxicity , MCF-7 Cells , Male , Mice , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...