Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38475020

ABSTRACT

A detection and classification machine-learning model to inspect Thin Film Transistor Liquid Crystal Display (TFT-LCD) Mura is proposed in this study. To improve the capability of the machine-learning model to inspect panels' low-contrast grayscale images, piecewise gamma correction and a Selective Search algorithm are applied to detect and optimize the feature regions based on the Semiconductor Equipment and Materials International Mura (SEMU) specifications. In this process, matching the segment proportions to gamma values of piecewise gamma is a task that involves derivative-free optimization which is trained by adaptive particle swarm optimization. The detection accuracy rate (DAR) is approximately 93.75%. An enhanced convolutional neural network model is then applied to classify the Mura type through using the Taguchi experimental design method that identifies the optimal combination of the convolution kernel and the maximum pooling kernel sizes. A remarkable defect classification accuracy rate (CAR) of approximately 96.67% is ultimately achieved. The entire defect detection and classification process can be completed in about 3 milliseconds.

2.
Polymers (Basel) ; 14(14)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35890660

ABSTRACT

Sandwich panel structures (SPSs) with lattice cores can considerably lower material consumption while simultaneously maintaining adequate mechanical properties. Compared with extruded lattice types, triply periodic minimal surface (TPMS) lattices have light weight but better controllable mechanical properties. In this study, the different types of TPMS lattices inside an SPS were analysed comprehensively. Each SPS comprised two face sheets and a core filled with 20×5×1 TPMS lattices. The types of TPMS lattices considered included the Schwarz primitive (SP), Scherk's surface type 2 (S2), Schoen I-graph-wrapped package (I-WP), and Schoen face-centred cubic rhombic dodecahedron (F-RD). The finite element method was applied to determine the mechanical performance of different TPMS lattices at different relative densities inside the SPS under a three-point bending test, and the results were compared with the values calculated from analytical equations. The results showed a difference of less than 21% between the analytical and numerical results for the deformation. SP had the smallest deformation among the TPMS lattices, and F-RD can withstand the highest allowable load. Different failure modes were proposed to predict potential failure mechanisms. The results indicated that the mechanical performances of the TPMS lattices were mainly influenced by the lattice geometry and relative density.

SELECTION OF CITATIONS
SEARCH DETAIL
...