Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
RSC Adv ; 14(29): 20879-20883, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38957582

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a powerful measurement method in the chemical analysis field. It is much superior to bulk Raman owing to the enhancement of signal sensitivity from the SERS substrate. Nevertheless, the delicate SERS substrates are overpriced, which results in the difficulty of universal measurements. Accordingly, opting for a substrate made of polymer material based on the nanoimprint technique shows great potential for low-cost and high-performance SERS substrates. However, due to its low heat conductivity, the polymer's thermal properties may cause heat to concentrate on the incident spot and damage the nanostructures or analytes. In this article, we proposed a novel design of the Reflective Raman (RR) system to reduce the input power density and maintain high collection efficiency at the same time. The proposed RR system was directly compared with a traditional micro Raman (µ-Raman) system and demonstrated its outstanding performance for low damage threshold analytes and SERS substrates.

2.
Microsyst Nanoeng ; 10: 68, 2024.
Article in English | MEDLINE | ID: mdl-38799404

ABSTRACT

Triboelectric nanogenerators (TENGs) have emerged as a promising approach for generating electricity and providing electrical stimuli in medical electronic devices. Despite their potential benefits, the clinical implementation of TENGs faces challenges such as skin compliance and a lack of comprehensive assessment regarding their biosafety and efficacy. Therefore, further research is imperative to overcome these limitations and unlock the full potential of TENGs in various biomedical applications. In this study, we present a flexible silk fibroin-based triboelectric nanogenerator (SFB-TENG) that features an on-skin substrate and is characterized by excellent skin compliance and air/water permeability. The range of electrical output generated by the SFB-TENG was shown to facilitate the migration and proliferation of Hy926, NIH-3T3 and RSC96 cells. However, apoptosis of fibroblast NIH-3T3 cells was observed when the output voltage increased to more than 20 V at a frequency of 2 Hz. In addition, the moderate electrical stimulation provided by the SFB-TENG promoted the cell proliferation cycle in Hy926 cells. This research highlights the efficacy of a TENG system featuring a flexible and skin-friendly design, as well as its safe operating conditions for use in biomedical applications. These findings position TENGs as highly promising candidates for practical applications in the field of tissue regeneration.

3.
Nat Commun ; 15(1): 618, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38242877

ABSTRACT

Germanium (Ge) is an attractive material for Silicon (Si) compatible optoelectronics, but the nature of its indirect bandgap renders it an inefficient light emitter. Drawing inspiration from the significant expansion of Ge volume upon lithiation as a Lithium (Li) ion battery anode, here, we propose incorporating Li atoms into the Ge to cause lattice expansion to achieve the desired tensile strain for a transition from an indirect to a direct bandgap. Our first-principles calculations show that a minimal amount of 3 at.% Li can convert Ge from an indirect to a direct bandgap to possess a dipole transition matrix element comparable to that of typical direct bandgap semiconductors. To enhance compatibility with Si Complementary-Metal-Oxide-Semiconductors (CMOS) technology, we additionally suggest implanting noble gas atoms instead of Li atoms. We also demonstrate the tunability of the direct-bandgap emission wavelength through the manipulation of dopant concentration, enabling coverage of the mid-infrared to far-infrared spectrum. This Ge-based light-emitting approach presents exciting prospects for surpassing the physical limitations of Si technology in the field of photonics and calls for experimental proof-of-concept studies.

4.
BMC Mol Cell Biol ; 25(1): 2, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38172660

ABSTRACT

BACKGROUND: Fas-associated factor 1 (FAF1) is a multidomain protein that interacts with diverse partners to affect numerous cellular processes. Previously, we discovered two Small Ubiquitin-like Modifier (SUMO)-interacting motifs (SIMs) within FAF1 that are crucial for transcriptional modulation of mineralocorticoid receptor. Recently, we identified Sin3A-associated protein 130 (SAP130), a putative sumoylated protein, as a candidate FAF1 interaction partner by yeast two-hybrid screening. However, it remained unclear whether SAP130 sumoylation might occur and functionally interact with FAF1. RESULTS: In this study, we first show that SAP130 can be modified by SUMO1 at Lys residues 794, 878 and 932 both in vitro and in vivo. Mutation of these three SUMO-accepting Lys residues to Ala had no impact on SAP130 association with Sin3A or its nuclear localization, but the mutations abrogated the association of SAP130 with the FAF1. The mutations also potentiated SAP130 trans-repression activity and attenuated SAP130-mediated promotion of cell growth. Additionally, SUMO1-modified SAP130 was less stable than unmodified SAP130. Transient transfection experiments further revealed that FAF1 mitigated the trans-repression and cell proliferation-promoting functions of SAP130, and promoted SAP130 degradation by enhancing its polyubiquitination in a sumoylation-dependent manner. CONCLUSIONS: Together, these results demonstrate that sumoylation of SAP130 regulates its biological functions and that FAF1 plays a crucial role in controlling the SUMO-dependent regulation of transcriptional activity and protein stability of SAP130.


Subject(s)
Sumoylation , Transcription Factors , Transcription Factors/metabolism , Ubiquitination , Protein Stability
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009218

ABSTRACT

OBJECTIVE@#To investigate the clinical effect of modified suspension reduction method combined with percutaneous vertebroplasty in the treatment of osteoporotic thoracolumbar compression fractures.@*METHODS@#From February 2020 to October 2021, 92 patients with thoracolumbar osteoporotic compression fracture were treated by percutaneous vertebroplasty. According to different treatment methods, they were divided into the observation group and the control group. The observation group was treated with modified suspension reduction and then percutaneous vertebroplasty, while the control group was treated with percutaneous vertebroplasty alone. The observation group (47 cases), including 20 males and 27 females, the age ranged from 59 to 76 years old with an average of (69.74±4.50) years old, fractured vertebral bodies:T10(2 cases), T11(7 cases), T12(19 cases), L1(14 cases), L2(5 cases);the control group(45 cases), including 21 males and 24 females, the age ranged from 61 to 78 years old with an average of (71.02±3.58) years old, fractured vertebral bodies:T10(3 cases), T11(8 cases), T12(17 cases), L1(12 cases), L2(5 cases);The leakage of bone cement were observed, the visual analogue scale (VAS), Oswestry lumbar dysfunction index (ODI), anterior vertebrae height (AVH), Cobb angle of kyphosis and the amount of bone cement injected before and after operation were recorded and compared between the two groups.@*RESULTS@#All patients were followed up, ranged from 6 to10 with an average of (8.45±1.73) months. Two patients ocurred bone cement leakage in observation group and 3 patients in control group. AVH of observation group increased (P<0.05) and Cobb angle of injured vertebrae decreased (P<0.05). Cobb angle of injured vertebrae and AVH of the control group were not significantly changed (P>0.05). Cobb angle of injured vertebrae of the observation group was lower than that of control group (P<0.05) and AVH was higher than that of the control group (P<0.05). In the observation group, VAS before operation and 1 week, 3 and 6 months after operation respectively were(7.32±1.05) scores, (3.56±1.18) scores, (1.83±0.67) scores, (1.27±0.34) scores, and ODI were(40.12±14.69) scores, (23.76±10.19) scores, (20.15±6.39) scores, (13.45±3.46) scores. In the control group, VAS before operation and 1 week, 3 and 6 months after operation respectively were(7.11±5.26) scores, (3.82±0.68) scores, (1.94±0.88) scores, (1.36±0.52) scores, and ODI were(41.38±10.23) scores, (25.13±14.22) scores , (20.61±5.82) scores, (14.55±5.27) scores . The scores of VAS and ODI after operation were lower than those before operation (P<0.05), but there was no significant difference between the two groups (P<0.05).@*CONCLUSION@#Modified suspension reduction method combined with PVP surgery for osteoporotic thoracolumbar compression fractures has achieved good clinical results, which can effectively relieve lumbar back pain, restore vertebral height, correct kyphosis, improve lumbar function and patients' quality of life.


Subject(s)
Male , Female , Humans , Middle Aged , Aged , Bone Cements/therapeutic use , Vertebroplasty/methods , Fractures, Compression/surgery , Quality of Life , Treatment Outcome , Spinal Fractures/surgery , Lumbar Vertebrae/injuries , Osteoporotic Fractures/surgery , Kyphosis/surgery , Retrospective Studies
6.
Appl Opt ; 62(32): 8614-8620, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38037978

ABSTRACT

Despite the fact that a supersonic cooling gas film can efficiently insulate aerodynamic heating, its interaction with the mainstream generates a sophisticated flow structure which may cause significant aero-optical ramifications. This study aims to analyze the fluid structure and wavefront distortion of supersonic gas film when subjected to varying nozzle pressure ratios (NPR) by employing two distinct cooling refrigerants, namely C O 2 and air. Within the NPR range of 0 to 2, a linear relationship exists between the wavefront distortion of both C O 2 and air films, while the C O 2 film exhibits higher wavefront distortion than the air. Additionally, the influence of condensation on the discrepancies in aero-optical effects of the two refrigerants is discussed.

7.
RSC Adv ; 13(47): 33288-33293, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37964906

ABSTRACT

We developed an automated Raman measurement platform for the customized design of various solution containers. We used the software LabVIEW to integrate the entire automatic measurement process. By designing an intuitive human-machine interface, the user only needs to input a few setting parameters and can efficiently operate the machine in automation mode for an array of solutions containing real or counterfeit liquors such as kaoliang liquor, vodka, rum, gin, rice wine, ethanol, and methanol. In this study, data from various alcoholic beverage solutions were subjected to principal component analysis (PCA) to distinguish from the low-concentration counterfeit liquors (methanol <50 g L-1). Moreover, several brands of liquors with the same alcohol concentration were successfully classified into different groups based on a combination of Raman spectroscopy and PCA analysis.

8.
Eur J Pharmacol ; 957: 176031, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37660967

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury triggers several cell death types, including apoptosis, autophagy, and ferroptosis. Licochalcone A (LCA), a natural flavonoid compound isolated from the root of Glycyrrhiza glabra, has been demonstrated to exert potential pharmacological benefits, such as antioxidant, antitumor, and anti-inflammatory activities. The present study aimed to investigate the involvement of ferroptosis in the pathogenesis of I/R and determine whether LCA can inhibit ferroptosis to prevent the myocardial I/R injury in rats. The effects of LCA on myocardial I/R injury were detected by examining the left ventricular-developed pressure and triphenyltetrazolium chloride staining. We conducted Western blotting analyses, ELISA assay, and quantitative real-time PCR to determine the levels of ferroptosis-related molecules. To demonstrate the cardioprotective effect of LCA in vitro, H9c2 and primary neonatal rat cardiomyocytes were co-treated with ferroptosis inducers (erastin, RSL3, or Fe-SP) and LCA for 16 and 24 h. Our ex vivo study showed that LCA increased the cardiac contractility, and reduced the infarct volume and ferroptosis-related biomarkers in rat hearts after I/R. Moreover, LCA reduced the levels of ferroptosis inducers-induced reactive oxygen species generation, lipid peroxidation, and ferroptosis-related biomarkers in cultured H9c2 cells and cardiomyocytes. LCA also reduced the Fe-SP-increased nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 protein levels in cultured cardiomyocytes. In the present study, we showed that the LCA-induced cardioprotective effects in attenuating the myocardial I/R injury were correlated with ferroptosis regulation, and provided a possible new therapeutic strategy for prevention or therapy of the myocardial I/R injury.


Subject(s)
Chalcones , Ferroptosis , Animals , Rats , Chalcones/pharmacology , Chalcones/therapeutic use , Cardiovascular Physiological Phenomena , Ischemia
9.
Data Brief ; 49: 109377, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600127

ABSTRACT

This data article presents electrical resistivity imaging (ERI) data and inverted models with the objectives of hydrogeological characterization, land subsidence studies, and geological structural detections in Taiwan. The ERI data for hydrogeological studies includes 5 ERI profiles from Changhua, 33 from Yunlin, 36 from Yilan, 23 from Taichung, 23 from Chiayi and Tainan, and 23 from Taipei basins. In addition, time-lapse ERI profiles are presented for 10 ERI from Yilan, 10 ERI from Pingtung, 11 ERI from Taichung, and 31 ERI from Minzu basins. Moreover, 10 ERI data were used to detect the Rusui Fault, 12 for the Qishan Fault, 13 for the Yuli Fault, and 25 for the Shanyi Fault. This data article contains 265 ERI profiles with a total survey length of 59,905 m. A single ERI profile contains hundreds to thousands of subsurface apparent resistivity data points. The data was collected between 2010 and 2022 from different regions of Taiwan. The main findings from the ERI data consisted here were reported by Lin et al. [1] for the Pingtung basin, Chang et al. [2] for the Minzu basin, and Jordi et al. [3] for the Taichung basin in order to estimate hydraulic parameters and characterize the aquifer systems. The ERI data presented here can be used for a variety of hydrogeological, geological, engineering, and environmental applications, and it can be further interpreted using machine learning and statistical methods. Therefore, the ERI data will helps in various subsurface applications, academic research, and educational purposes.

10.
Nat Commun ; 14(1): 5301, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652909

ABSTRACT

Many textbook physical effects in crystals are enabled by some specific symmetries. In contrast to such 'apparent effects', 'hidden effect X' refers to the general condition where the nominal global system symmetry would disallow the effect X, whereas the symmetry of local sectors within the crystal would enable effect X. Known examples include the hidden Rashba and/or hidden Dresselhaus spin polarization that require spin-orbit coupling, but unlike their apparent counterparts are demonstrated to exist in non-magnetic systems even in inversion-symmetric crystals. Here, we discuss hidden spin polarization effect in collinear antiferromagnets without the requirement for spin-orbit coupling (SOC). Symmetry analysis suggests that antiferromagnets hosting such effect can be classified into six types depending on the global vs local symmetry. We identify which of the possible collinear antiferromagnetic compounds will harbor such hidden polarization and validate these symmetry enabling predictions with first-principles density functional calculations for several representative compounds. This will boost the theoretical and experimental efforts in finding new spin-polarized materials.

11.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37512654

ABSTRACT

Sustainable and safe food is an important issue worldwide, and it depends on cost-effective analysis tools with good sensitivity and reality. However, traditional standard chemical methods of food safety detection, such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and tandem mass spectrometry (MS), have the disadvantages of high cost and long testing time. Those disadvantages have prevented people from obtaining sufficient risk information to confirm the safety of their products. In addition, food safety testing, such as the bioassay method, often results in false positives or false negatives due to little rigor preprocessing of samples. So far, food safety analysis currently relies on the enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), HPLC, GC, UV-visible spectrophotometry, and MS, all of which require significant time to train qualified food safety testing laboratory operators. These factors have hindered the development of rapid food safety monitoring systems, especially in remote areas or areas with a relative lack of testing resources. Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the tools of choice for food safety testing that can overcome these dilemmas over the past decades. SERS offers advantages over chromatographic mass spectrometry analysis due to its portability, non-destructive nature, and lower cost implications. However, as it currently stands, Raman spectroscopy is a supplemental tool in chemical analysis, reinforcing and enhancing the completeness and coverage of the food safety analysis system. SERS combines portability with non-destructive and cheaper detection costs to gain an advantage over chromatographic mass spectrometry analysis. SERS has encountered many challenges in moving toward regulatory applications in food safety, such as quantitative accuracy, poor reproducibility, and instability of large molecule detection. As a result, the reality of SERS, as a screening tool for regulatory announcements worldwide, is still uncommon. In this review article, we have compiled the current designs and fabrications of SERS substrates for food safety detection to unify all the requirements and the opportunities to overcome these challenges. This review is expected to improve the interest in the sensing field of SERS and facilitate the SERS applications in food safety detection in the future.

12.
Sensors (Basel) ; 23(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37447702

ABSTRACT

This paper proposes a common-mode noise suppression filter scheme for use in the servers and computer systems of high-speed buses such as SATA Express, HDMI 2.0, USB 3.2, and PCI Express 5.0. The filter uses a novel series-mushroom-defected corrugated reference plane (SMDCRP) structure. The measured results are similar to the full-wave simulation results. In the frequency domain, the measured insertion loss of the SMDCRP structure filter in differential mode (DM) can be kept below -4.838 dB from DC to 32 GHz and can maintain signal integrity characteristics. The common-mode (CM) suppression performance can suppress more than -10 dB from 8.81 GHz to 32.65 GHz. Fractional bandwidth can be increased to 115%, and CM noise can be ameliorated by 55.2%. In the time domain, using eye diagram verification, the filter shows complete differential signal transmission capability and supports a transmission rate of 32 Gb/s for high-speed buses. The SMDCRP structure filter reduces the electromagnetic interference (EMI) problem and meets the quality requirements for the controllers and sensors used in the server and computer systems of high-speed buses.


Subject(s)
Agaricales , Percutaneous Coronary Intervention , Computer Simulation , Computer Systems
13.
Front Cell Neurosci ; 17: 1187400, 2023.
Article in English | MEDLINE | ID: mdl-37448698

ABSTRACT

Purpose: To investigate the relationship between the intraocular levels of complement proteins and myopia-related retinal neuronal and vascular degeneration. Methods: Aqueous humour from 147 myopic patients, including 60 low-myopia and 87 high-myopia were collected during Implantable Collamer Lens implantation surgery. All participants received comprehensive ophthalmic examinations, including logMAR best corrected visual acuity, axial length measurement, fundus photography and ocular B-scan ultrasonography. The myopic eyes were further classified into simple myopia (SM, n = 78), myopic posterior staphyloma (PS, n = 39) and PS with myopic chorioretinal atrophy (PS + CA, n = 30). Retinal thickness and vascular density in the macula (6 mm × 6 mm) and optic nerve head (4.5 mm × 4.5 mm) were measured using Optical Coherence Tomography (OCT) and OCT angiography (OCTA). The levels of complement proteins including C1q, C3, C3b/iC3b, C4, CFB, CFH, C2, C4b, C5, C5a, CFD, MBL and CFI in the aqueous humour were measured using the Luminex Multiplexing system. The real-time RT-PCR was conducted to examine the expression of complement genes (C1q, C2, C3, C4, CFI and CFD) in the guinea pig model of long-term form deprivation-induced myopic retinal degeneration. Results: OCTA showed that retinal neuronal thickness and vascular density in superficial and deep layers of the macular zone as well as vascular density in the optic nerve head were progressively decreased from SM to PS and PS + CA (p < 0.05). The aqueous humour levels of C1q, C3, C3b/iC3b, C4, CFB, CFH, C2, C4b, C5 and CFI were significantly higher in high-myopic eyes compared to those in low-myopic eyes. Further subgroup analysis revealed the highest levels of complement components/fragments in the PS + CA group. The intraocular levels of complement factors particularly C3b/iC3b and C4 were negatively correlated with macular zone deep layer retinal thickness and vascular density and optic nerve head vascular density. The expression of C2, C3 and C4 genes was significantly higher in guinea pig eyes with myopic retinal degeneration compared to control eyes. Conclusions: The intraocular classical pathway and alternative pathway of the complement system are partially activated in pathological myopia. Their activation is related to the degeneration of retinal neurons and the vasculature in the macula and the vasculature in the optic nerve head.

14.
Polymers (Basel) ; 15(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37376363

ABSTRACT

Vat photopolymerization (VPP) is an effective additive manufacturing (AM) process known for its high dimensional accuracy and excellent surface finish. It employs vector scanning and mask projection techniques to cure photopolymer resin at a specific wavelength. Among the mask projection methods, digital light processing (DLP) and liquid crystal display (LCD) VPP have gained significant popularity in various industries. To upgrade DLP and LCC VPP into a high-speed process, increasing both the printing speed and projection area in terms of the volumetric print rate is crucial. However, challenges arise, such as the high separation force between the cured part and the interface and a longer resin refilling time. Additionally, the divergence of the light-emitting diode (LED) makes controlling the irradiance homogeneity of large-sized LCD panels difficult, while low transmission rates of near ultraviolet (NUV) impact the processing time of LCD VPP. Furthermore, limitations in light intensity and fixed pixel ratios of digital micromirror devices (DMDs) constrain the increase in the projection area of DLP VPP. This paper identifies these critical issues and provides detailed reviews of available solutions, aiming to guide future research towards developing a more productive and cost-effective high-speed VPP in terms of the high volumetric print rate.

15.
Adv Mater ; 35(31): e2211966, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37119476

ABSTRACT

Energy bands in antiferromagnets are supposed to be spin degenerate in the absence of spin-orbit coupling (SOC). Recent studies have identified formal symmetry conditions for antiferromagnetic crystals in which this degeneracy can be lifted, spin splitting,even in the vanishing SOC (i.e., non-relativistic) limit. Materials having such symmetries could enable spin-split antiferromagnetic spintronics without the burden of using heavy-atom compounds. However, the symmetry conditions that involve spin and magnetic symmetry are not always effective as practical material selection filters. Furthermore, these symmetry conditions do not readily disclose trends in the magnitude and momentum dependence of the spin-splitting energy. Here, it is shown that the formal symmetry conditions enabling spin-split antiferromagnets can be interpreted in terms of local motif pairs, such as octahedra or tetrahedra, each carrying opposite magnetic moments. Collinear antiferromagnets with such a spin-structure motif pair, whose components interconvert by neither translation nor spatial inversion, will show spin splitting. Such a real-space motif-based approach enables an easy way to identify and design materials (illustrated in real example materials) having spin splitting without the need for SOC, and offers insights into the momentum dependence and magnitude of the spin splitting.

16.
An. bras. dermatol ; 98(2): 202-207, March.-Apr. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1429650

ABSTRACT

Abstract Background: Studies have shown that the overall incidence rate of herpeszoster (HZ) in China is 6.64 cases per 1000 people, despite such harms brought by postherpetic neuralgia (PHN), the mechanism of the disease remains unclear in China. Currently, effective biomarkers to predict PHN remain unavailable, which makes it difficult to prevent and successfully treat PHN. Objectives: The aim of the study was to determine the serum interleukin-6 level in PHN. Methods: The serum levels of interleukin 6 (IL-6) were measured by multi-antibody sandwich ELISA. The likert scale was used to represent the degree of neuralgia in the patients. Patients with PHN were divided into a mild PHN group and a severe PHN group according to the Likert scale. ROC curve was performed for evaluating the diagnostic efficiency of IL6 for PHN. The correlation between the IL6 level and the Likert scale before and after treatment with gabapentin and mecobalamin was analyzed. Results: IL6 levels in PHN patients resulted higher compared to volunteers. Patients in the severe PHN group had a higher serum IL6 level than in the mild PHN group. The Likert scale score was related to the serum IL6 levels and the frequency of IL6 levels above the cutoff value (4.95pg/mL) in PNH groups before and after treatment (p<0.05). Study limitations: Pain is subjective. Some mental states, such as anxiety and depression, greatly influence an individual's perception of pain, and pain tolerance can vary between people. Therefore, pain scores can be affected by different individual factors. Conclusions: The serum IL6 levels may be used as a biochemical indicator of the severity of PNH.

17.
Front Pharmacol ; 14: 1133011, 2023.
Article in English | MEDLINE | ID: mdl-36909187

ABSTRACT

Drug resistance is a huge hurdle in tumor therapy. Tumor hypoxia contributes to chemotherapy resistance by inducing the hypoxia-inducible factor-1α (HIF-1α) pathway. To reduce tumor hypoxia, novel approaches have been devised, providing significant importance to reverse therapeutic resistance and improve the effectiveness of antitumor therapies. Herein, the nanosystem of bovine serum albumin (BSA)-templated manganese dioxide (MnO2) nanoparticles (BSA/MnO2 NPs) loaded with doxorubicin (DOX) (DOX-BSA/MnO2 NPs) developed in our previous report was further explored for their physicochemical properties and capacity to reverse DOX resistance because of their excellent photothermal and tumor microenvironment (TME) response effects. The DOX-BSA/MnO2 NPs showed good biocompatibility and hemocompatibility. Meanwhile, DOX-BSA/MnO2 NPs could greatly affect DOX pharmacokinetic properties, with prolonged circulation time and reduced cardiotoxicity, besides enhancing accumulation at tumor sites. DOX-BSA/MnO2 NPs can interact with H2O2 and H+ in TME to form oxygen and exhibit excellent photothermal effect to further alleviate hypoxia due to MnO2, reversing DOX resistance by down-regulating HIF-1α expression and significantly improving the antitumor efficiency in DOX-resistant human breast carcinoma cell line (MCF-7/ADR) tumor model. The hypoxia-ameliorated photothermal MnO2 platform is a promising strategy for revering DOX resistance.

18.
Sensors (Basel) ; 23(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36679754

ABSTRACT

In the PCB process, overcoming common-mode noise radiation is critical. In past years, most studies have focused on a common-mode noise filter (CMNF) that can solve electromagnetic interference in high-speed digital systems by blocking and absorbing common-mode noise radiation. Unfortunately, connecting with any reflective common-mode noise filter (R-CMNF) and reducing the area of an absorptive common-mode noise filter (A-CMNF) are the most troublesome tasks in the PCB process. A novel equivalent circuit is proposed in this research to minimize the complexity of the design and improve accuracy. Detailed analyses of this proposed approach are entirely depicted in this article. The experiment result shows that 9% of fractional bandwidth centered at 2.25 Hz can achieve at least 90% absorption efficiency. With our proposed method, the area of A-CMNF is smaller than in state-of-the-art research.


Subject(s)
Noise
19.
An Bras Dermatol ; 98(2): 202-207, 2023.
Article in English | MEDLINE | ID: mdl-36669977

ABSTRACT

BACKGROUND: Studies have shown that the overall incidence rate of herpeszoster (HZ) in China is 6.64 cases per 1000 people, despite such harms brought by postherpetic neuralgia (PHN), the mechanism of the disease remains unclear in China. Currently, effective biomarkers to predict PHN remain unavailable, which makes it difficult to prevent and successfully treat PHN. OBJECTIVE: The aim of the study was to determine the serum interleukin-6 level in PHN. METHODS: The serum levels of interleukin 6 (IL-6) were measured by multi-antibody sandwich ELISA. The likert scale was used to represent the degree of neuralgia in the patients. Patients with PHN were divided into a mild PHN group and a severe PHN group according to the Likert scale. ROC curve was performed for evaluating the diagnostic efficiency of IL6 for PHN. The correlation between the IL6 level and the Likert scale before and after treatment with gabapentin and mecobalamin was analyzed. RESULTS: IL6 levels in PHN patients resulted higher compared to volunteers. Patients in the severe PHN group had a higher serum IL6 level than in the mild PHN group. The Likert scale score was related to the serum IL6 levels and the frequency of IL6 levels above the cutoff value (4.95 pg/mL) in PNH groups before and after treatment (p < 0.05). STUDY LIMITATIONS: Pain is subjective. Some mental states, such as anxiety and depression, greatly influence an individual's perception of pain, and pain tolerance can vary between people. Therefore, pain scores can be affected by different individual factors. CONCLUSIONS: The serum IL6 levels may be used as a biochemical indicator of the severity of PNH.


Subject(s)
Herpes Zoster , Neuralgia, Postherpetic , Humans , Gabapentin , Herpes Zoster/complications , Herpes Zoster/drug therapy , Interleukin-6 , Neuralgia, Postherpetic/drug therapy , Neuralgia, Postherpetic/epidemiology , Neuralgia, Postherpetic/etiology , Retrospective Studies
20.
J Ethnopharmacol ; 306: 116166, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36649850

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bamboos are perennial evergreen plants that belong to the subfamily Bambusoideae of the true grass family Poaceae, with more than thousands of species distributed around the world. They are used as a traditional medicine with demonstrated effects of anti-oxidation, free radical scavenging, anti-inflammatory, liver protection and ameliorating cognitive deficits. Bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic and nervous system diseases. AIM OF THE STUDY: This review aims to provide up-to-date information on the traditional medicinal properties, phytochemistry, pharmacology, and purification technologies of bamboo leaf. MATERIALS AND METHODS: Relevant information on bamboo leaf was obtained by an online search of worldwide accepted scientific databases (Web of Science, ScienceDirect, Elsevier, SpringerLink, ACS Publications, Wiley Online Library and CNKI). RESULTS: More than 100 chemical compounds, including flavonoids and flavonoid glycosides, volatile components, phenolic acids, polysaccharide, coenzyme Q10, phenylpropanoid and amino acids have been reported to be present. These compounds were usually extracted by column chromatography and membrane separation technologies. Preparative high performance liquid chromatography (PHPLC), high-speed counter-current chromatography (HSCCC), simulated moving bed chromatography (SMB) and dynamic axial compression chromatography (DAC) were the advanced separation technologies have been used to isolate C-glycosides from bamboo leaf flavonoid, the main bioactive ingredient of bamboo leaf. Currently, bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic, hepatic diseases and nervous system related symptoms, which are attributed to the presence of bioactive components of bamboo leaf. CONCLUSIONS: Phytochemical and pharmacological analyses of bamboo leaf have been revealed in recent studies. However, most of the pharmacological studies on bamboo leaf have focused on bamboo leaf flavonoids. Further studies need to pay more attention to other phytochemical components of bamboo leaf. In addition, there is lack of sufficient clinical data and toxicity studies on bamboo leaf. Therefore, more clinical and toxicity researches on this plant and constituents are recommended.


Subject(s)
Medicine, Traditional , Phytotherapy , Ethnopharmacology/methods , Medicine, Traditional/methods , Plant Leaves , Technology , Phytochemicals/pharmacology , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...