Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 763
Filter
1.
J Environ Manage ; 366: 121700, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996599

ABSTRACT

Co-digestion has been considered a promising method to improve methane yield. The effect of the proportion of dominant substrate on the performance and microbial community of anaerobic digestion of Pennisetum hybrid (PH) and livestock waste (LW) was investigated. An obvious synergistic effect was obtained with an increase of 15.20%-17.45% in specific methane yield compared to the predicted value. Meanwhile, the dominant substrate influenced the relational model between methane yield enhancement rate and mixture ratio. For the LW-dominant systems, a parabolic model between enhancement rate and mixture ratio was observed with a highest value of 392.16 mL/g VS achieved at a PH:LW ratio of 2:8. While a linear pattern appeared for PH-dominant systems with the highest methane yield of 307.59 mL/g VS. Co-digestion selectively enriched the relative abundance of Clostridium_sensu_stricto_1, Terrisporobacter, Syntrophomonas, Methanosarcina and Methanobacterium, which boosted the performance of hydrolysis, acidogenesis, acetogenesis and methanogenesis processes.

2.
Heliyon ; 10(13): e33444, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027605

ABSTRACT

Ethylene glycol (EG, 1,2-ethanediol) is a two-carbon dihydroxy alcohol that can be derived from fermentation of plant-derived xylose and arabinose and which can be formed during food fermentations. Here we show that Propionibacterium freudenreichii DSM 20271 is able to convert EG in anaerobic conditions to ethanol and acetate in almost equimolar amounts. The metabolism of EG led to a moderate increase of biomass, indicating its metabolism is energetically favourable. A proteomic analysis revealed EG induced expression of the pdu-cluster, which encodes a functional bacterial microcompartment (BMC) involved in the degradation of 1,2-propanediol, with the presence of BMCs confirmed using transmission electron microscopy. Cross-examination of the proteomes of 1,2-propanediol and EG grown cells revealed PDU BMC-expressing cells have elevated levels of DNA repair proteins and cysteine biosynthesis proteins. Cells grown in 1,2-propanediol and EG also showed enhanced resistance against acid and bile salt-induced stresses compared to lactate-grown cells. Our analysis of whole genome sequences of selected genomes of BMC-encoding microorganisms able to metabolize EG with acetaldehyde as intermediate indicate a potentially broad-distributed role of the pdu operon in metabolism of EG. Based on our results we conclude EG is metabolized to acetate and ethanol with acetaldehyde as intermediate within BMCs in P. freudenreichii.

3.
Br J Haematol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924065

ABSTRACT

The global pandemic has resulted in the common occurrence of SARS-CoV-2 infection in the population. In the post-pandemic era, it is imperative to understand the influence of donor SARS-CoV-2 infection on outcomes after allogeneic haematopoietic stem cell transplantation (allo-HSCT). We retrospectively analysed allo-HSCTs from donors with mild SARS-CoV-2 infection or early recovery stage (ERS) (group 1, n = 65) and late recovery stage (group 2, n = 120). Additionally, we included allo-HSCT from donors without prior SARS-CoV-2 infection as group 0 (n = 194). Transplants from donors with different SARS-CoV-2 infection status had comparable primary engraftment and survival rates. However, group 1 had higher incidences of acute graft-versus-host disease (aGvHD), grade II-IV (41.5% vs. 28.1% in group 0 [p = 0.014] and 30.6% in group 2 [p = 0.067]) and grade III-IV (22.2% vs. 9.6% [p = 0.004] in group 0 and 12.2% in group 2 [p = 0.049]). Conversely, the risk of aGvHD in group 2 was similar to that in group 0 (p > 0.5). Multivariable analysis identified group 1 associated with grade II-IV (hazard ratio [HR] 2.307, p = 0.010) and grade III-IV (HR 2.962, p = 0.001) aGvHD, which yielded no significant risk factors for survival. In conclusion, we preliminarily demonstrated donors in the active infection state or ERS of mild SARS-CoV-2 infection were associated with higher incidences of aGvHD in transplants from related donors.

4.
Technol Cancer Res Treat ; 23: 15330338241260331, 2024.
Article in English | MEDLINE | ID: mdl-38860337

ABSTRACT

OBJECTIVE: To compare the ability of gadolinium ethoxybenzyl dimeglumine (Gd-EOB-DTPA) and gadobenate dimeglumine (Gd-BOPTA) to display the 3 major features recommended by the Liver Imaging Reporting and Data System (LI-RADS 2018v) for diagnosing hepatocellular carcinoma (HCC). MATERIALS AND METHODS: In this retrospective study, we included 98 HCC lesions that were scanned with either Gd-EOB-DTPA-MR or Gd-BOPTA-M.For each lesion, we collected multiple variables, including size and enhancement pattern in the arterial phase (AP), portal venous phase (PVP), transitional phase (TP), delayed phase (DP), and hepatobiliary phase (HBP). The lesion-to-liver contrast (LLC) was measured and calculated for each phase and then compared between the 2 contrast agents. A P value < .05 was considered statistically significant. The display efficiency of the LLC between Gd-BOPTA and Gd-EOB-DTPA for HCC features was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS: Between Gd-BOPTA and Gd-EOB-DTPA, significant differences were observed regarding the display efficiency for capsule enhancement and the LLC in the AP/PVP/DP (P < .05), but there was no significant difference regarding the LLC in the TP/HBP. Both Gd-BOPTA and Gd-EOB-DTPA had good display efficiency in each phase (AUCmin > 0.750). When conducting a total evaluation of the combined data across the 5 phases, the display efficiency was excellent (AUC > 0.950). CONCLUSION: Gd-BOPTA and Gd-EOB-DTPA are liver-specific contrast agents widely used in clinical practice. They have their own characteristics in displaying the 3 main signs of HCC. For accurate noninvasive diagnosis, the choice of agent should be made according to the specific situation.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Gadolinium DTPA , Liver Neoplasms , Magnetic Resonance Imaging , Meglumine , Organometallic Compounds , ROC Curve , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnosis , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Meglumine/analogs & derivatives , Middle Aged , Aged , Retrospective Studies , Adult , Image Enhancement/methods , Aged, 80 and over
5.
Abdom Radiol (NY) ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824474

ABSTRACT

OBJECTIVE: To compare the ability to depict MRI features of hepatobiliary agents in microvascular infiltration (MVI) of hepatocellular carcinoma (HCC) during different stages of dynamic enhancement MRI. MATERIALS AND METHODS: A retrospective study included 111 HCC lesions scanned with either Gd-EOB-DTPA or Gd-BOPTA. All cases underwent multiphase dynamic contrast-enhanced scanning before surgery, including arterial phase (AP), portal venous phase (PVP), transitional phase (TP), delayed phase (DP), and hepatobiliary phase (HBP). Two abdominal radiologists independently evaluated MRI features of MVI in HCC, such as peritumoral hyperenhancement, incomplete capsule, non-smooth tumor margins, and peritumoral hypointensity. Finally, the results were reviewed by the third senior abdominal radiologist. Chi-square (χ2) Inspection for comparison between groups. P < 0.05 is considered statistically significant. Receiver operating characteristic (ROC) curve was used to evaluate correlation with pathology, and the area under the curve (AUC) and 95% confidence interval (95% CI) were calculated. RESULTS: Among the four MVI evaluation signs, Gd-BOPTA showed significant differences in displaying two signs in the HBP (P < 0.05:0.000, 0.000), while Gd-EOB-DTPA exhibited significant differences in displaying all four signs (P < 0.05:0.005, 0.006, 0.000, 0.002). The results of the evaluations of the two contrast agents in the DP phase with incomplete capsulation showed the highest correlation with pathology (AUC: 0.843, 0.761). By combining the four MRI features, Gd-BOPTA and Gd-EOB-DTPA have correlated significantly with pathology, and Gd-BOPTA is better (AUC: 0.9312vs0.8712). CONCLUSION: The four features of hepatobiliary agent dynamic enhancement MRI demonstrate a good correlation with histopathological findings in the evaluation of MVI in HCC, and have certain clinical significance.

6.
Diagnostics (Basel) ; 14(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786280

ABSTRACT

The identification of risk factors for future prediabetes in young men remains largely unexamined. This study enrolled 6247 young ethnic Chinese men with normal fasting plasma glucose at the baseline (FPGbase), and used machine learning (Mach-L) methods to predict prediabetes after 5.8 years. The study seeks to achieve the following: 1. Evaluate whether Mach-L outperformed traditional multiple linear regression (MLR). 2. Identify the most important risk factors. The baseline data included demographic, biochemistry, and lifestyle information. Two models were built, where Model 1 included all variables and Model 2 excluded FPGbase, since it had the most profound effect on prediction. Random forest, stochastic gradient boosting, eXtreme gradient boosting, and elastic net were used, and the model performance was compared using different error metrics. All the Mach-L errors were smaller than those for MLR, thus Mach-L provided the most accurate results. In descending order of importance, the key factors for Model 1 were FPGbase, body fat (BF), creatinine (Cr), thyroid stimulating hormone (TSH), WBC, and age, while those for Model 2 were BF, white blood cell, age, TSH, TG, and LDL-C. We concluded that FPGbase was the most important factor to predict future prediabetes. However, after removing FPGbase, WBC, TSH, BF, HDL-C, and age were the key factors after 5.8 years.

7.
Article in English | MEDLINE | ID: mdl-38702173

ABSTRACT

Objective: To observe the effects of Qiye Shen'an Pian combined with ghrelin and vitamin B1 on the fatigue status, immune function, and quality of life of patients with chronic fatigue syndrome (CFS), focusing specifically on the efficacy of this combination therapy. Methods: In this prospective study, 106 CFS patients admitted from June 2021 to June 2023 were selected. Using a simple randomisation method, patients were divided into two groups. The conventional group received glutathione and vitamin B1 treatment, while the Qiye Shen'an group received an additional treatment with Qiye Shen'an Pian on top of the standard glutathione and vitamin B1, for a continuous period of 8 weeks. To assess treatment efficacy, we compared immune function-related indexes (such as CD4+, CD8+, CD4+/CD8+ ratio, NK cell ratio), free radical metabolism indexes (like lipid peroxide, catalytic enzyme, and superoxide dismutase levels), TCM symptom scores, FS-14 scores, and SPHERE scores between the two groups. Adverse reactions were also recorded and statistically analyzed. Results: Notable improvements were observed in both groups, with the Qiye Shen'an group showing particularly significant enhancements. Post-treatment immune function indicators revealed a greater decrease in CD8+ levels in the Qiye Shen'an group (P < .05), along with marked increases in CD4+, CD4+/CD8+ ratio, and NK cell ratio in both groups, more so in the Qiye Shen'an group (P < .05). Free radical metabolism indicators, including lipid peroxide levels, decreased in both groups, with a more significant reduction observed in the Qiye Shen'an group (P < .05). The levels of catalytic enzyme and superoxide dismutase increased in both groups, with a notably higher improvement in the Qiye Shen'an group (P < .05). In terms of TCM symptom scores, FS-14 scores, and SPHERE scores, both groups showed a reduction after treatment, with a more substantial decrease in the Qiye Shen'an group (P < .05). Conclusion: In this study, we observed that Qiye Shen'an Pian combined with glutathione and vitamin B1, produced significant improvements in immune function and antioxidant capacity in patients with chronic fatigue syndrome (CFS). Specifically, patients' CD4+, CD8+ levels, and superoxide dismutase (SOD) activity all showed positive changes after treatment. These changes are crucial for enhancing patients' disease resistance and reducing fatigue symptoms. Qiye Shen'an Pian combined with glutamine and vitamin B1 in the treatment of CFS can alleviate the fatigue state of patients, improve the immune function, enhance the antioxidant capacity of the body, and improve somatic and psychological health. These findings underscore the potential of this combination therapy in effectively managing chronic fatigue syndrome, offering a promising direction for future treatment strategies.

8.
Front Oncol ; 14: 1309681, 2024.
Article in English | MEDLINE | ID: mdl-38746684

ABSTRACT

Objectives: In this study, we compared the dynamic changes in body composition during XELOX/SOX chemotherapy in patients with gastric cancer. Furthermore, we investigated the potential impact of these changes on the occurrence of toxic side effects. Methods: Patients with gastric cancer who received adjuvant or first-line XELOX/SOX chemotherapy between January 2020 and June 2023 were enrolled. The Brief Conghua Scale was used to assess energy intake, and nutritional management was carried out with reference to the Chinese Guidelines for Nutritional Therapy of Cancer 2020. The NRS 2002 Nutritional Risk Screening Scale, PG-SGA scale, bioelectrical impedance analysis, and dynamic changes in lumbar 3 vertebral skeletal muscle index were compared between baseline and post-chemotherapy in the study. The neutropenia was evaluated using the Common Terminology Criteria for Adverse Events V.5.0, developed by the National Institutes of Health. Results: Dynamic follow-up was completed in 39 cases, with a mean follow-up time of 117.62 ± 43.38 days. The incidence of sarcopenia increased significantly after chemotherapy, escalating from 46.2% to 51.3%. After chemotherapy, the mean L3SMI decreased from 36.00 cm2/m2 to 34.99 cm2/m2. Furthermore, when compared to pre-chemotherapy values, the body composition indexes body mass index (BMI), SL3, fat mass free index (FFMI), lean body mass (LBM), and body surface area (BSA) were significantly reduced after chemotherapy. Regardless of baseline or post-chemotherapy status, the incidence of grade ≥ 3 neutropenia was significantly higher in the sarcopenia group than in the non-sarcopenia group. Furthermore, when the skeletal muscle index decreased during chemotherapy, the incidence of grade ≥ 3 neutropenia was significantly higher in both the sarcopenia and non-sarcopenia groups compared to baseline. When the incidence of grade ≥ 3 neutropenia in the post-chemotherapy sarcopenia group was compared to baseline status, the increase was significantly higher in the sarcopenia group than in the maintenance/increase group. Conclusions: Skeletal muscle mass decreased progressively during XELOX/SOX chemotherapy in gastric cancer patients, followed by a higher incidence of grade ≥ 3 neutropenia.

9.
Int J Surg ; 110(5): 2593-2603, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38748500

ABSTRACT

PURPOSE: The authors aimed to establish an artificial intelligence (AI)-based method for preoperative diagnosis of breast lesions from contrast enhanced mammography (CEM) and to explore its biological mechanism. MATERIALS AND METHODS: This retrospective study includes 1430 eligible patients who underwent CEM examination from June 2017 to July 2022 and were divided into a construction set (n=1101), an internal test set (n=196), and a pooled external test set (n=133). The AI model adopted RefineNet as a backbone network, and an attention sub-network, named convolutional block attention module (CBAM), was built upon the backbone for adaptive feature refinement. An XGBoost classifier was used to integrate the refined deep learning features with clinical characteristics to differentiate benign and malignant breast lesions. The authors further retrained the AI model to distinguish in situ and invasive carcinoma among breast cancer candidates. RNA-sequencing data from 12 patients were used to explore the underlying biological basis of the AI prediction. RESULTS: The AI model achieved an area under the curve of 0.932 in diagnosing benign and malignant breast lesions in the pooled external test set, better than the best-performing deep learning model, radiomics model, and radiologists. Moreover, the AI model has also achieved satisfactory results (an area under the curve from 0.788 to 0.824) for the diagnosis of in situ and invasive carcinoma in the test sets. Further, the biological basis exploration revealed that the high-risk group was associated with the pathways such as extracellular matrix organization. CONCLUSIONS: The AI model based on CEM and clinical characteristics had good predictive performance in the diagnosis of breast lesions.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Mammography , Humans , Female , Mammography/methods , Breast Neoplasms/diagnostic imaging , Retrospective Studies , Middle Aged , Adult , Contrast Media , Aged , Deep Learning , Breast/diagnostic imaging , Breast/pathology
10.
Fam Med ; 56(4): 222-228, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38748631

ABSTRACT

Since European settlement, the United States has controlled the reproduction of communities of color through tactics ranging from forced pregnancies, sterilizations, and abortions to immigration policies and policies that separate children from their families. Lesbian, gay, bisexual, transgender, queer (or questioning), asexual, intersex, and gender diverse people (LGBTQIA+) have been persecuted for sexual behavior and gender expression, and also restricted from having children. In response, women of color and LGBTQIA+ communities have organized for Reproductive Justice (RJ) and liberation. The Reproductive Justice framework, conceived in 1994 by the Women of African Descent for Reproductive Justice, addresses the reproductive health needs of Black women and communities from a broad human rights perspective. Since then, the framework has expanded with an intersectional approach to include all communities of color and LGBTQIA+ communities. Notwithstanding, reproductive injustice negatively impacts the health of already marginalized and oppressed communities, which is reflected in higher rates of maternal mortality, infant mortality, infertility, preterm births, and poorer health outcomes associated with race-based stress. While the impact of racial injustice on disparate health outcomes is increasingly addressed in family medicine, Reproductive Justice has not been universally incorporated into care provision or education. Including the RJ framework in family medicine education is critical to understanding how structural, economic, and political factors influence health outcomes to improve health care delivery from a justice and human rights perspective. This commentary describes how an RJ framework can enhance medical education and care provision, and subsequently identifies strategies for incorporating Reproductive Justice teaching into family medicine education.


Subject(s)
Family Practice , Sexual and Gender Minorities , Social Justice , Humans , Family Practice/education , Female , United States , Reproductive Health
11.
Int J Biol Macromol ; 270(Pt 2): 132450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772462

ABSTRACT

A comparative transcriptomic and metabolomic analysis of Polygonum cuspidatum leaves treated with MeJA was carried out to investigate the regulatory mechanisms of its active compounds. A total of 692 metabolites and 77,198 unigenes were obtained, including 200 differentially accumulated metabolites and 6819 differentially expressed genes. We screened potential regulatory transcription factors involved in resveratrol and flavonoids biosynthesis, and successfully identified an MYB transcription factor, PcMYB62, which could significantly decrease the resveratrol content in P. cuspidatum leaves when over-expressed. PcMYB62 could directly bind to the MBS motifs in the promoter region of stilbene synthase (PcSTS) gene and repress its expression. Besides, PcMYB62 could also repress PcSTS expression and resveratrol biosynthesis in transgenic Arabidopsis thaliana. Our results provide abundant candidate genes for further investigation, and the new finding of the inhibitory role of PcMYB62 on the resveratrol biosynthesis could also potentially be used in metabolic engineering of resveratrol in P. cuspidatum.


Subject(s)
Acetates , Cyclopentanes , Fallopia japonica , Gene Expression Regulation, Plant , Metabolome , Oxylipins , Plant Proteins , Resveratrol , Transcription Factors , Transcriptome , Resveratrol/metabolism , Resveratrol/pharmacology , Fallopia japonica/metabolism , Fallopia japonica/genetics , Acetates/pharmacology , Acetates/metabolism , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Oxylipins/pharmacology , Oxylipins/metabolism , Transcriptome/drug effects , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Acyltransferases/genetics , Acyltransferases/metabolism , Gene Expression Profiling , Plants, Genetically Modified/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/drug effects
12.
Sci Rep ; 14(1): 7638, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561452

ABSTRACT

Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.


Subject(s)
Hereditary Central Nervous System Demyelinating Diseases , Male , Female , Humans , Hereditary Central Nervous System Demyelinating Diseases/genetics , Mutation , Phenotype , Atrophy , RNA, Transfer , RNA Polymerase III/genetics , RNA Polymerase III/metabolism
13.
Can Assoc Radiol J ; : 8465371241238917, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577746

ABSTRACT

PURPOSE: To assess the diagnostic utility of clinical magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) in distinguishing between histological grading and isocitrate dehydrogenase (IDH) classification in adult diffuse gliomas. METHODS: A retrospective analysis was conducted on 247 patients diagnosed with adult diffuse glioma. Experienced radiologists evaluated DWI and MRS images. The Kruskal-Wallis test examined differences in DWI and MRS-related parameters across histological grades, while the Mann-Whitney U test assessed molecular classification. Receiver Operating Characteristic (ROC) curves evaluated parameter effectiveness. Survival curves, stratified by histological grade and IDH classification, were constructed using the Kaplan-Meier test. RESULTS: The cohort comprised 141 males and 106 females, with ages ranging from 19 to 85 years. The Kruskal-Wallis test revealed significant differences in ADC mean, Cho/NAA, and Cho/Cr concerning glioma histological grade (P < .01). Subsequent application of Dunn's test showed significant differences in ADC mean among each histological grade (P < .01). Notably, Cho/NAA exhibited a marked distinction between grade 2 and grade 3/4 gliomas (P < .01). The Mann-Whitney U test indicated that only ADC mean showed statistical significance for IDH molecular classification (P < .01). ROC curves were constructed to demonstrate the effectiveness of the specified parameters. Survival curves were also delineated to portray survival outcomes categorized by histological grade and IDH classification. Conclusions: Clinical MRS demonstrates efficacy in glioma histological grading but faces challenges in IDH classification. Clinical DWI's ADC mean parameter shows significant distinctions in both histological grade and IDH classification.

14.
J Exp Clin Cancer Res ; 43(1): 123, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654325

ABSTRACT

BACKGROUND: Aberrant fucosylation observed in cancer cells contributes to an augmented release of fucosylated exosomes into the bloodstream, where miRNAs including miR-4732-3p hold promise as potential tumor biomarkers in our pilot study. However, the mechanisms underlying the sorting of miR-4732-3p into fucosylated exosomes during lung cancer progression remain poorly understood. METHODS: A fucose-captured strategy based on lentil lectin-magnetic beads was utilized to isolate fucosylated exosomes and evaluate the efficiency for capturing tumor-derived exosomes using nanoparticle tracking analysis (NTA). Fluorescence in situ hybridization (FISH) and qRT-PCR were performed to determine the levels of miR-4732-3p in non-small cell lung cancer (NSCLC) tissue samples. A co-culture system was established to assess the release of miRNA via exosomes from NSCLC cells. RNA immunoprecipitation (RIP) and miRNA pull-down were applied to validate the interaction between miR-4732-3p and heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein. Cell functional assays, cell derived xenograft, dual-luciferase reporter experiments, and western blot were applied to examine the effects of miR-4732-3p on MFSD12 and its downstream signaling pathways, and the impact of hnRNPK in NSCLC. RESULTS: We enriched exosomes derived from NSCLC cells using the fucose-captured strategy and detected a significant upregulation of miR-4732-3p in fucosylated exosomes present in the serum, while its expression declined in NSCLC tissues. miR-4732-3p functioned as a tumor suppressor in NSCLC by targeting 3'UTR of MFSD12, thereby inhibiting AKT/p21 signaling pathway to induce cell cycle arrest in G2/M phase. NSCLC cells preferentially released miR-4732-3p via exosomes instead of retaining them intracellularly, which was facilitated by the interaction of miR-4732-3p with hnRNPK protein for selective sorting into fucosylated exosomes. Moreover, knockdown of hnRNPK suppressed NSCLC cell proliferation, with the elevated levels of miR-4732-3p in NSCLC tissues but the decreased expression in serum fucosylated exosomes. CONCLUSIONS: NSCLC cells escape suppressive effects of miR-4732-3p through hnRNPK-mediated sorting of them into fucosylated exosomes, thus supporting cell malignant properties and promoting NSCLC progression. Our study provides a promising biomarker for NSCLC and opens a novel avenue for NSCLC therapy by targeting hnRNPK to prevent the "exosome escape" of tumor-suppressive miR-4732-3p from NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Fucose , Heterogeneous-Nuclear Ribonucleoprotein K , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glycosylation , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Exosomes/metabolism , MicroRNAs/blood , MicroRNAs/metabolism , Genes, Tumor Suppressor , Fucose/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Down-Regulation , Animals , Mice , Mice, Nude , Cell Proliferation , Cell Cycle Checkpoints , Membrane Proteins/analysis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Prognosis , Signal Transduction , Disease Progression , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood
15.
Biomed Pharmacother ; 174: 116538, 2024 May.
Article in English | MEDLINE | ID: mdl-38579401

ABSTRACT

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Subject(s)
Ependymoglial Cells , Glaucoma , Histone Deacetylase Inhibitors , Histone Deacetylases , Mice, Inbred C57BL , Oxidative Stress , Animals , Oxidative Stress/drug effects , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/pathology , Histone Deacetylase Inhibitors/pharmacology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Mice , Histone Deacetylases/metabolism , Retina/drug effects , Retina/metabolism , Retina/pathology , Disease Models, Animal , Neuroprotective Agents/pharmacology , Male , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control
16.
Mar Biotechnol (NY) ; 26(3): 588-598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652190

ABSTRACT

The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been widely applied in animals as an efficient genome editing tool. However, the technique is difficult to implement in fish cell lines partially due to the lack of efficient promoters to drive the expression of both sgRNA and the Cas9 protein within a single vector. In this study, it was indicated that the zebrafish U6 RNA polymerase III (ZFU6) promoter could efficiently induce tyrosinase (tyr) gene editing and lead to loss of retinal pigments when co-injection with Cas9 mRNA in zebrafish embryo. Furthermore, an optimized all-in-one vector for expression of the CRISPR/Cas9 system in the zebrafish fibroblast cell line (PAC2) was constructed by replacing the human U6 promoter with ZFU6 promoter, basing on the lentiCRISPRV2 system that widely applied in mammal cells. This new vector could successfully target the cellular communication network factor 2a (ctgfa) gene and demonstrated its function in the PAC2 cell. Notably, the vector could also be used to edit the endogenous EMX1 gene in the mammal 293 T cell line, implying its wide application potential. In conclusion, we established a new gene editing tool for zebrafish cell line, which could be a useful in vitro platform for high-throughput analyzing gene function in fish.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Vectors , Promoter Regions, Genetic , Zebrafish , Zebrafish/genetics , Animals , Gene Editing/methods , Cell Line , Humans , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , HEK293 Cells , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594444

ABSTRACT

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Subject(s)
Glioblastoma , NF-kappa B , Neoplastic Stem Cells , Signal Transduction , Tumor-Associated Macrophages , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , Animals , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , NF-kappa B/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment
18.
Dig Dis Sci ; 69(6): 2109-2122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564148

ABSTRACT

BACKGROUND: Cholesterol ester storage disorder (CESD; OMIM: 278,000) was formerly assumed to be an autosomal recessive allelic genetic condition connected to diminished lysosomal acid lipase (LAL) activity due to LIPA gene abnormalities. CESD is characterized by abnormal liver function and lipid metabolism, and in severe cases, liver failure can occur leading to death. In this study, one Chinese nonclassical CESD pedigree with dominant inheritance was phenotyped and analyzed for the corresponding gene alterations. METHODS: Seven males and eight females from nonclassical CESD pedigree were recruited. Clinical features and LAL activities were documented. Whole genome Next-generation sequencing (NGS) was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations, and qPCR detected LIPA mRNA expression. RESULTS: Eight individuals of the pedigree were speculatively thought to have CESD. LAL activity was discovered to be lowered in four living members of the pedigree, but undetectable in the other four deceased members who died of probable hepatic failure. Three of the four living relatives had abnormal lipid metabolism and all four had liver dysfunctions. By liver biopsy, the proband exhibited diffuse vesicular fatty changes in noticeably enlarged hepatocytes and Kupffer cell hyperplasia. Surprisingly, only a newly discovered heterozygous mutation, c.1133T>C (p. Ile378Thr) on LIPA, was found by gene sequencing in the proband. All living family members who carried the p.I378T variant displayed reduced LAL activity. CONCLUSIONS: Phenotypic analyses indicate that this may be an autosomal dominant nonclassical CESD pedigree with a LIPA gene mutation.


Subject(s)
Cholesterol Ester Storage Disease , Heterozygote , Pedigree , Sterol Esterase , Humans , Male , Female , Cholesterol Ester Storage Disease/genetics , Cholesterol Ester Storage Disease/diagnosis , Sterol Esterase/genetics , Adult , Mutation , Genes, Dominant , Middle Aged , Phenotype , Adolescent , Child
19.
MedComm (2020) ; 5(4): e469, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525108

ABSTRACT

Motor proteins, encoded by Kinesin superfamily (KIF) genes, are critical for brain development and plasticity. Increasing studies reported KIF's roles in neurodevelopmental disorders. Here, a 6 years and 3 months-old Chinese boy with markedly symptomatic epilepsy, intellectual disability, brain atrophy, and psychomotor retardation was investigated. His parents and younger sister were phenotypically normal and had no disease-related family history. Whole exome sequencing identified a novel heterozygous in-frame deletion (c.265_267delTCA) in exon 3 of the KIF5C in the proband, resulting in the removal of evolutionarily highly conserved p.Ser90, located in its ATP-binding domain. Sanger sequencing excluded the proband's parents and family members from harboring this variant. The activity of ATP hydrolysis in vitro was significantly reduced as predicted. Immunofluorescence studies showed wild-type KIF5C was widely distributed throughout the cytoplasm, while mutant KIF5C was colocalized with microtubules. The live-cell imaging of the cargo-trafficking assay revealed that mutant KIF5C lost the peroxisome-transporting ability. Drosophila models also confirmed p.Ser90del's essential role in nervous system development. This study emphasized the importance of the KIF5C gene in intracellular cargo-transport as well as germline variants that lead to neurodevelopmental disorders and might enable clinicians for timely and accurate diagnosis and disease management in the future.

20.
Sci Total Environ ; 925: 171742, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38494022

ABSTRACT

BACKGROUND: No study has examined the association between per- and polyfluoroalkyl substances (PFAS) exposure and chronic obstructive pulmonary disease (COPD) risk. This study aims to explore this relationship. METHODS: This study enrolled 4541 individuals who had available data on PFAS, COPD, and covariates from NHANES 2007-2018. Serum PFAS including perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) were analyzed, because of high detective rates. Considering the skew distribution of PFAS levels, the natural logarithm-transformed PFAS (Ln-PFAS) was used. Logistic regression analysis, restricted cubic spline (RCS), and weighted quantile sum (WQS) regression were performed to explore the single, nonlinear, and mixed effects. A mediating analysis was used to evaluate the mediated effects of albumin. RESULTS: Individuals with COPD had higher levels of PFHxS, PFNA, PFOA, and PFOS compared to those without COPD. Ln-PFNA (OR males: 1.92, 95 % CI:1.31 to 2.80, P: <0.001; OR females: 1.07, 95 % CI: 0.81 to 1.40, P: 0.636) and ln-PFOA (OR males: 2.17, 95 % CI:1.38 to 3.41, P: <0.001; OR females: 1.49, 95 % CI: 1.08 to 2.05, P: 0.016) were associated with COPD risk especially in males. The interaction between PFNA exposure and sex on COPD risk was significant (P interaction: <0.001). The RCS curve demonstrated the nonlinear relationship between the ln-PFOA (P nonlinear:0.001), ln-PFNA (P nonlinear:0.045), and COPD risk in males. WQS analysis showed mixed PFAS exposure was correlated with COPD risk in males (OR: 1.44, 95 % CI:1.18 to 1.75, P: <0.001). Albumin mediated the relationship between PFOA and COPD (mediated proportion: -17.94 %). CONCLUSION: This study concludes PFOA and PFNA are linked to a higher COPD risk in males, and serum albumin plays a mediating role in the relationship between PFOA and COPD. Thess findings are beneficial for the prevention of COPD. Further studies are required to explore potential mechanisms.


Subject(s)
Alkanesulfonic Acids , Caprylates , Environmental Pollutants , Fatty Acids , Fluorocarbons , Pulmonary Disease, Chronic Obstructive , Male , Female , Humans , Nutrition Surveys , Serum Albumin , Prevalence , Alkanesulfonates , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...