Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.164
Filter
1.
Neural Regen Res ; 20(3): 845-857, 2025 Mar 01.
Article in English | MEDLINE | ID: mdl-38886957

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202503000-00029/figure1/v/2024-06-17T092413Z/r/image-tiff It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke. Indeed, previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue. Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke, but its specific role and mechanism are currently unclear. To simulate stroke in vivo, a middle cerebral artery occlusion rat model was established, with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke. We found that in the early stage (within 24 hours) of ischemic stroke, neutrophils produced a large amount of hypochlorous acid, while in the recovery phase (10 days after stroke), microglia were activated and produced a small amount of hypochlorous acid. Further, in acute stroke in rats, hypochlorous acid production was prevented using a hypochlorous acid scavenger, taurine, or myeloperoxidase inhibitor, 4-aminobenzoic acid hydrazide. Our results showed that high levels of hypochlorous acid (200 µM) induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation. However, in the recovery phase of the middle cerebral artery occlusion model, a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes. This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury. Lower levels of hypochlorous acid (5 and 100 µM) promoted nuclear translocation of ß-catenin. By transfection of single-site mutation plasmids, we found that hypochlorous acid induced chlorination of the ß-catenin tyrosine 30 residue, which promoted nuclear translocation. Altogether, our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.

2.
Carbohydr Polym ; 344: 122476, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218535

ABSTRACT

Addressing environmental concerns and producing sustainable and environmentally friendly electronic devices with low power consumption poses a significant challenge. This study introduces phototransistor devices employing morphologically controlled block copolymers based on maltotriose, maltoheptaose, and ß-cyclodextrin as polymer electrets. Ordered self-assembled morphologies can be achieved by utilizing microwave radiation for rapid annealing (within 5 s) with optimized annealing conditions. Herein, face-centered cubic (FCC), vertical, and mixed cylindrical nanostructures are reported. The resulting well-defined morphologies play a pivotal role in enhancing the electron-trapping capability of the block copolymers and facilitating charge carrier transport between the electret and semiconducting layers. Consequently, the phototransistor memory manifests exceptional performance, featuring stability and endurance. Intriguingly, the cavity of ß-cyclodextrin provides a stable environment for the trapped charges, leading to a larger memory window than other block copolymers. On the other hand, a device consisting of MT-b-PS exhibited superior current contrast exceeding 106 even under a low drain voltage of -1 V, attributed to sub-10 nm FCC nanostructures. Furthermore, this phototransistor device successfully emulated the synaptic functions of sensing, learning, and short- and long-term memory in the human brain, along with a low energy consumption of 0.312 fJ. Hence, this report opens the pathways for developing promising bio-based electronic devices.

3.
Aesthetic Plast Surg ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227472

ABSTRACT

BACKGROUND: Secondary reduction mammaplasty poses challenges. OBJECTIVES: This article delves into the reasons and complaints regarding secondary repair following double-ring method and outlines the principle and logic of utilizing vertical incision for repair. METHODS: A retrospective analysis of patients who underwent secondary reduction mammaplasty in our hospital was conducted. The analysis included baseline demographic data, reasons for consultation, surgical records, and postoperative outcomes. RESULTS: Thirty-five patients (70 breasts) underwent secondary reduction mammaplasty. The mean time between the primary reduction mammaplasty and second procedure was 2.99 years (range, 0.5-15years). The mean weights were 210.49g (range, 42-558g) and 207.91g (range, 6-560g) for left and right mastectomies, respectively. Reasons for secondary reduction mammaplasty include poor shape (flat breasts and pseudoptosis), widened incision scar, persistent macromastia, and bilateral asymmetry. CONCLUSIONS: The superior and superomedial vertical techniques are safe, effective, and satisfactory in secondary reduction mammaplasty. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors   www.springer.com/00266 .

4.
Colloids Surf B Biointerfaces ; 243: 114145, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39142000

ABSTRACT

The hypoxic microenvironment within the tumor microenvironment of breast cancer imposes a challenge in overcoming chemotherapy resistance. In this investigation, we designed a novel strategy utilizing a light-controlled cascade targeting nanomedicine specifically tailored for enhanced immune therapy of breast cancer. Albumin nanoparticle was achieved by crosslinking, followed by loading TPZ and Ce6, and subsequent modification to enable selective binding with CD44 hyaluronic acid to form nanomedicine. Encouragingly, it was demonstrated the remarkable ability of the nanomedicine to effectively internalize into cellular entities, thereby inducing apoptosis in 4T1 cells efficiently in vitro when exposed to light irradiation. In vivo assessments showcased the exceptional aptitude of the nanomedicine not only for preferential accumulation within tumor tissues, but also for substantial suppression of tumor growth. Immune mechanisms have shown that nanomedicine treatment promoted the maturation of DCs in vivo, enhanced the proportion of CD8+ T cells in the spleen and tumor, and simultaneously upregulated the ratio of M1 macrophages favorable for anti-tumor effects. These outcomes collectively advance a fresh perspective for the clinical breast cancer therapy.

5.
Sci Rep ; 14(1): 18992, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152261

ABSTRACT

Immune checkpoint inhibitors (ICIs) have become an important cornerstone of many tumour treatments. However, the toxicity profile of immune-chemotherapy combination treatment approaches among older adult cancer patients is still unclear. Patients with any cancer who received camrelizumab-based immunotherapy were eligible for inclusion. The primary endpoints were adverse events (AEs) and immune-related adverse events (irAEs), which were defined based on Naranjo's algorithm. Patients were stratified by age (≥ 70 years and < 70 years), and comparisons were made based on the type of camrelizumab-based therapy (monotherapy, combined chemotherapy, or combined anti-VEGF therapy). A total of 185 patients were administered camrelizumab-based immunotherapy, 55 (30%) of whom were ≥ 70 years old. A total of 146 (78.9%) patients received camrelizumab-based combination treatment. The incidence of all-grade AEs was 56.8% (105 patients), while that of irAEs was 36.8% (68 patients). There was no difference in the percentage of patients experiencing any grade or grade ≥ 3 AEs between age groups. However, the frequency of irAEs (both any grade and grade ≥ 3) significantly differed by age group (P = 0.001 and 0.009, respectively). The results of multivariable analysis revealed that age ≥ 70 years was the only independent risk factor for irAEs. The results of subgroup analysis revealed that the incidence of irAEs was higher in older patients treated with camrelizumab-chemotherapy, while the incidence rates were similar between age groups in the monotherapy and combination anti-VEGF treatment subgroups. Immune-related diabetes mellitus occurred more frequently among older adults. The spectrum of irAEs showed that combination immunotherapy had more widely effects on the organ system than monotherapy. In this study, older (≥ 70 years) patients had a higher risk of all-grade and high-grade irAEs when receiving camrelizumab chemotherapy combination treatment. Notably, long-term random glucose monitoring should be performed during ICI-based immunotherapy in older cancer patients.


Subject(s)
Antibodies, Monoclonal, Humanized , Immunotherapy , Neoplasms , Humans , Aged , Male , Female , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Neoplasms/drug therapy , Immunotherapy/adverse effects , Middle Aged , Aged, 80 and over , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Age Factors , Retrospective Studies
6.
Environ Sci Technol ; 58(33): 14895-14905, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39115177

ABSTRACT

Breaking the activity-selectivity trade-off has been a long-standing challenge in catalysis. Here, we proposed a nanoheterostructure engineering strategy to overcome the trade-off in metal phosphide catalysts for the oxidative desulfurization (ODS) of fuels. Experimental and theoretical results demonstrated that electron delocalization was the key driver to simultaneously achieve high activity and high selectivity for the molybdenum phosphide (MoP)/tungsten phosphide (WP) nanoheterostructure catalyst. The electron delocalization not only promoted the catalytic pathway transition from predominant radicals to singlet oxygens in H2O2 activation but also simultaneously optimized the adsorption of reactants and intermediates on Mo and W sites. The presence of such dual-enhanced active sites ideally compensated for the loss of activity due to the nonradical catalytic pathway, consequently disentangling the activity-selectivity trade-off. The resulting catalyst (MoWP2/C) unprecedentedly achieved 100% removal of thiophenic compounds from real diesel at an initial concentration of 2676 ppm of sulfur with a high turnover frequency (TOF) of 105.4 h-1 and a minimal O/S ratio of 4. This work provides fundamental insight into the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire the development of high-performance catalysts for ODS and other catalytic fields.


Subject(s)
Oxidation-Reduction , Catalysis , Sulfur/chemistry , Electrons , Transition Elements/chemistry
7.
Sensors (Basel) ; 24(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39124089

ABSTRACT

Optimizing the operation of photovoltaic (PV) storage systems is crucial for meeting the load demands of parks while minimizing curtailment and enhancing economic efficiency. This paper proposes a multi-scenario collaborative optimization strategy for PV storage systems based on a master-slave game model. Three types of energy storage system (ESS) application scenarios are designed to comprehensively stabilize PV fluctuations, compensate for load transfers, and participate in the frequency regulation (FR) market, thereby optimizing the overall operational strategy of PV storage systems in parks. The upper-level objective is to maximize the park operators' profit, while the lower-level objective is to minimize the user's power supply costs. Case studies demonstrate that this strategy can significantly increase the economic benefits for park operators by 25.8%, reduce user electricity expenditures by 5.27%, and lower curtailment through a load response mechanism, thereby promoting the development and construction of PV storage parks.

8.
Heliyon ; 10(14): e34269, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108889

ABSTRACT

Epithelial-to-mesenchymal transition (EMT), a process by which epithelial cells acquire mesenchymal cell characteristics, is well recognized for its critical role in development, wound healing, tissue fibrosis, and cancer progression. During wound healing, keratinocytes undergo a partially reversible EMT process to promote migration and re-epithelialization. In this paper, we review the regulatory roles of key signaling pathways (TGF-ß, Wnt/ß-catenin, Notch) and core transcription factors (Snail, Slug, Twist) in EMT, explore the parallels between re-epithelialization and EMT, and outline recent therapeutic advances and future developments targeting EMT in wound healing. In addition, we call for the adoption of the term "epithelial-mesenchymal plasticity" (EMP) to more accurately describe the dynamic processes that occur during keratinocyte migration and re-epithelialization.

9.
J Transl Med ; 22(1): 780, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175050

ABSTRACT

BACKGROUND: Mitochondrial tRNA (mt-tRNA) variants have been found to cause disease. Post-transcriptional queuosine (Q) modifications of mt-tRNA can promote efficient mitochondrial mRNA translation. Q modifications of mt-tRNAAsn have recently been identified. Here, the therapeutic effectiveness of queuine was investigated in cells from patients with mt-tRNAAsn variants. METHODS: Six patients (from four families) carrying mt-tRNAAsn variants were included in the study. Queuine levels were quantified by mass spectrometry. Clinical, genetic, histochemical, biochemical, and molecular analysis was performed on muscle tissues and lymphoblastoid cell lines (LCLs) from patients to investigate the pathogenicity of the novel m.5708 C > T variant. The use of queuine in mitigating mitochondrial dysfunction resulting from the mt-tRNAAsn variants was evaluated. RESULTS: The variants included the m.5701 delA, m.5708 C > T, m.5709 C > T, and m.5698 G > A variants in mt-tRNAAsn. The pathogenicity of the novel m.5708 C > T variant was confirmed, as demonstrated by a decreased steady-state level of mt-tRNAAsn, mtDNA-encoded protein levels, oxygen consumption rate (OCR), and the respiratory complex activity. Notably, the serum queuine level was significantly reduced in these patients and in vitro queuine supplementation was found to restore the reductions in mitochondrial protein activities, mitochondrial membrane potential, OCR, and increases in reactive oxygen species. CONCLUSIONS: The study not only confirmed the pathogenicity of the m.5708 C > T variant but also explored the therapeutic potential of queuine in individuals with mt-tRNAAsn variants. The recognition of the novel m.5708 C > T variant's pathogenic nature contributes to our comprehension of mitochondrial disorders. Furthermore, the results emphasize queuine supplementation as a promising approach to enhance the stability of mt-tRNAAsn and rescue mitochondrial dysfunction caused by mt-tRNAAsn variants, indicating potential implications for the development of targeted therapies for patients with mt-tRNAAsn variants.


Subject(s)
Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Male , Female , Adult , Middle Aged , DNA, Mitochondrial/genetics , Genetic Variation , Membrane Potential, Mitochondrial/drug effects , Nucleoside Q/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Transfer, Ala/genetics , RNA, Transfer, Ala/metabolism
10.
Clin Pharmacokinet ; 63(8): 1147-1165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102093

ABSTRACT

BACKGROUND: In clinical practice, the vast array of potential drug combinations necessitates swift and accurate assessments of pharmacokinetic drug-drug interactions (DDIs), along with recommendations for adjustments. Current methodologies for clinical DDI evaluations primarily rely on basic extrapolations from clinical trial data. However, these methods are limited in accuracy owing to their lack of a comprehensive consideration of various critical factors, including the inhibitory potency, dosage, and type of the inhibitor, as well as the metabolic fraction and intestinal availability of the substrate. OBJECTIVE: This study aims to propose an efficient and accurate clinical pharmacokinetic-mediated DDI assessment tool, which comprehensively considers the effects of inhibitory potency and dosage of inhibitors, intestinal availability and fraction metabolized of substrates on DDI outcomes. METHODS: This study focuses on DDIs caused by cytochrome P450 3A4 enzyme inhibition, utilizing extensive clinical trial data to establish a methodology to calculate the metabolic fraction and intestinal availability for substrates, as well as the concentration and inhibitory potency for inhibitors ( K i or k inact / K I ). These parameters were then used to predict the outcomes of DDIs involving 33 substrates and 20 inhibitors. We also defined the risk index for substrates and the potency index for inhibitors to establish a clinical DDI risk scale. The training set for parameter calculation consisted of 73 clinical trials. The validation set comprised 89 clinical DDI trials involving 53 drugs. which was used to evaluate the reliability of in vivo values of K i and k inact / K I , the accuracy of DDI predictions, and the false-negative rate of risk scale. RESULTS: First, the reliability of the in vivo K i and k inact / K I values calculated in this study was assessed using a basic static model. Compared with values obtained from other methods, this study values showed a lower geometric mean fold error and root mean square error. Additionally, incorporating these values into the physiologically based pharmacokinetic-DDI model facilitated a good fitting of the C-t curves when the substrate's metabolic enzymes are inhibited. Second, area under the curve ratio predictions of studied drugs were within a 1.5 × margin of error in 81% of cases compared with clinical observations in the validation set. Last, the clinical DDI risk scale developed in this study predicted the actual risks in the validation set with only a 5.6% incidence of serious false negatives. CONCLUSIONS: This study offers a rapid and accurate approach for assessing the risk of pharmacokinetic-mediated DDIs in clinical practice, providing a foundation for rational combination drug use and dosage adjustments.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , Humans , Risk Assessment/methods , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A/metabolism , Clinical Trials as Topic/methods , Models, Biological , Pharmaceutical Preparations/metabolism
11.
Int J Cancer ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177486

ABSTRACT

Locally advanced breast cancer (LABC) is challenging with limited treatment options. This study investigates the feasibility and long-term outcomes of upfront surgery compared to neoadjuvant chemotherapy (NAC) in a real-world cohort. This retrospective study analyzed 243 inoperable LABC patients (excluding T3N1M0) that underwent upfront surgery (n = 187) or NAC (n = 56) in matched groups. Disease-free survival (DFS) and overall survival (OS) are primary outcomes. Secondary outcomes included NAC response rate and subgroup analyses based on age, tumor stage, and treatment response. Survival was estimated using Kaplan-Meier methods with log-rank tests for comparisons. Cox proportional hazards models were used for subgroup analyses. With a median follow-up of 60.9 months, no significant difference emerged in 5-year OS (upfront surgery: 89.6%, NAC: 81.9%, p = .12) or 5-year DFS rates (73.0% vs. 67.1%, p = .24). Subgroup analyses revealed upfront surgery offered significantly better OS for patients under 60 (HR = 0.32; 95% CI: 0.10-0.96; p = .0429) and stage IIIA disease (HR = 0.22; CI: 0.06-0.86; p = .03). Upfront surgery showed a trend towards improved OS for tumors under 5 cm (HR = 0.37; 95% CI: 0.13-1.03; p = .056). Patients with progressive disease (PD) or stable disease (SD) after NAC had significantly worse DFS (HR = 0.27; 95% CI: 0.09-0.79; p = .017) and OS (HR = 0.09; 95% CI: 0.02-0.48; p = .004) compared to responders. Upfront surgery may be viable for LABC patients, particularly younger patients, those with stage IIIA disease, or smaller tumors. NAC response can inform treatment decisions. These findings highlight the need for personalized LABC treatment considering patient characteristics and NAC response.

12.
Front Genet ; 15: 1335093, 2024.
Article in English | MEDLINE | ID: mdl-39149589

ABSTRACT

Background: Atopic dermatitis (AD) is inflammatory disease. So far, therapeutic mechanism of Runfuzhiyang powder on AD remains to be studied. This study aimed to mine key biomarkers to explore potential molecular mechanism for AD incidence and Runfuzhiyang powder treatment. Methods: The control group, AD group, treat group (AD mice treated with Runfuzhiyang powder were utilized for studying. Differentially expressed AD-related genes were acquired by intersecting of key module genes related to control group, AD group and treatment group which were screened by WGCNA and AD-related differentially expressed genes (DEGs). KEGG and GO analyses were further carried out. Next, LASSO regression analysis was utilized to screen feature genes. The ROC curves were applied to validate the diagnostic ability of feature genes to obtain AD-related biomarkers. Then protein-protein interaction (PPI) network, immune infiltration analysis and single-gene gene set enrichment analysis (GSEA) were presented. Finally, TF-mRNA-lncRNA and drug-gene networks of biomarkers were constructed. Results: 4 AD-related biomarkers (Ddit4, Sbf2, Senp8 and Zfp777) were identified in AD groups compared with control group and treat group by LASSO regression analysis. The ROC curves revealed that four biomarkers had good distinguishing ability between AD group and control group, as well as AD group and treatment group. Next, GSEA revealed that pathways of E2F targets, KRAS signaling up and inflammatory response were associated with 4 biomarkers. Then, we found that Ddit4, Sbf2 and Zfp777 were significantly positively correlated with M0 Macrophage, and were significantly negatively relevant to Resting NK. Senp8 was the opposite. Finally, a TF-mRNA-lncRNA network including 200 nodes and 592 edges was generated, and 20 drugs targeting SENP8 were predicted. Conclusion: 4 AD-related and Runfuzhiyang powder treatment-related biomarkers (Ddit4, Sbf2, Senp8 and Zfp777) were identified, which could provide a new idea for targeted treatment and diagnosis of AD.

13.
J Clin Oncol ; : JCO2302503, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094065

ABSTRACT

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.LIBRETTO-001 is a registrational phase I/II, single-arm, open-label study of selpercatinib in patients with RET (REarranged during Transfection)-activated cancers (ClinicalTrials.gov identifier: NCT03157128). We present long-term safety and efficacy from LIBRETTO-001 in patients with RET-mutant medullary thyroid cancer (MTC; n = 324) and RET fusion-positive thyroid cancer encompassing different histological subtypes (TC; n = 66). At the data cutoff of January 2023, the objective response rate was 82.5% among patients with cabozantinib/vandetanib-naïve MTC and 95.8% among patients with treatment-naïve TC. At a median follow-up time of 42.4 and 44.0 months in patients with cabozantinib/vandetanib-naïve and pretreated MTC, the median progression-free survival (PFS) was not reached and 41.4 months, respectively. At a median follow-up time of 24.9 and 30.4 months in patients with treatment-naïve and pretreated TC, the median PFS was not reached and 27.4 months, respectively. Three-year PFS rates were 75.2% and 87.3% among patients with cabozantinib/vandetanib-naïve MTC and treatment-naïve TC, respectively. Median PFS was similar to median duration of response for each patient group. The safety profile of selpercatinib was consistent with previous reports. With an additional follow-up of 37 months and 228 more patients from the last disclosure, selpercatinib continued to provide durable and robust responses in treatment-naïve and previously treated patients with RET-mutant MTC and RET fusion-positive TC.

14.
J Nanobiotechnology ; 22(1): 485, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138462

ABSTRACT

Nanozymes are promising antimicrobials, as they produce reactive oxygen species (ROS). However, the intrinsic lack of selectivity of ROS in distinguishing normal flora from pathogenic bacteria deprives nanozymes of the necessary selectivities of ideal antimicrobials. Herein, we exploit the physiological conditions of bacteria (high alkaline phosphatase (ALP) expression) using a novel CuO nanoparticle (NP) nanoenzyme system to initiate an ALP-activated ROS prodrug system for use in the on-demand precision killing of bacteria. The prodrug strategy involves using 2-phospho-L-ascorbic acid trisodium salt (AAP) that catalyzes the ALP in pathogenic bacteria to generate ascorbic acid (AA), which is converted by the CuO NPs, with intrinsic ascorbate oxidase- and peroxidase-like activities, to produce ROS. Notably, the prodrug system selectively kills Escherichia coli (pathogenic bacteria), with minimal influence on Staphylococcus hominis (non-pathogenic bacteria) due to their different levels of ALP expression. Compared to the CuO NPs/AA system, which generally depletes ROS during storage, CuO NPs/AAP exhibits a significantly higher stability without affecting its antibacterial activity. Furthermore, a rat model is used to indicate the applicability of the CuO NPs/AAP fibrin gel in wound disinfection in vivo with negligible side effects. This study reveals the therapeutic precision of this bifunctional tandem nanozyme platform against pathogenic bacteria in ALP-activated conditions.


Subject(s)
Alkaline Phosphatase , Anti-Bacterial Agents , Copper , Disinfection , Escherichia coli , Prodrugs , Reactive Oxygen Species , Copper/chemistry , Copper/pharmacology , Animals , Prodrugs/pharmacology , Prodrugs/chemistry , Alkaline Phosphatase/metabolism , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Reactive Oxygen Species/metabolism , Disinfection/methods , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Ascorbic Acid/analogs & derivatives , Metal Nanoparticles/chemistry , Rats, Sprague-Dawley , Male
15.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129310

ABSTRACT

INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.

16.
Physiol Plant ; 176(4): e14469, 2024.
Article in English | MEDLINE | ID: mdl-39129660

ABSTRACT

Poor grain filling in inferior spikelets (IS), which is influenced by the remobilization of nonstructural carbohydrates (NSC) stored in the sheath and internode of rice plants, limits the expected high yield of large-panicle rice. NSC remobilization from the sheath to the panicle is regulated by the T6P/SnRK1 pathway. However, in large-panicle rice, it is unclear whether IS grain filling is related to the NSC remobilization mediated by T6P/SnRK1 signaling. In this study, two large-panicle cultivars-W1844 and CJ03-with distinct differences in IS grain filling were used to explore the physiological mechanism mediating IS development. Compared to W1844, CJ03 IS showed lower expression of the genes related to sucrose uploading, later sucrose peaking, and delayed starch accumulation. In the CJ03, low OsSUTs expression and NSC output, transport rate, and contribution rate were detected in the sheaths and internodes. These results suggest that poor NSC remobilization results in insufficient assimilate supply for the IS, and consequently, poor IS grain filling. Furthermore, poor NSC remobilization coincided with the increased T6P content and decreased SnRK1 activity during grain filling in CJ03 IS. The expression levels of genes related to T6P metabolism and those encoding the catalytic subunit of SnRK1 were consistent with the observed T6P content and SnRK1 activity in the sheaths and internodes. Therefore, IS grain filling is potentially affected by T6P/SnRK1 signaling-mediated NSC remobilization in large-panicle rice.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Starch/metabolism , Sucrose/metabolism , Carbohydrate Metabolism/genetics , Edible Grain/genetics , Edible Grain/metabolism , Edible Grain/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/growth & development
17.
Small ; : e2402567, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132749

ABSTRACT

The photosynaptic transistor stands as a promising contender for overcoming the von Neumann bottleneck in the realm of photo-communication. In this context, photonic synaptic transistors is developed through a straightforward solution process, employing an organic semiconducting polymer with pendant-naphthalene-containing side chains (PDPPNA) in combination with ligand-density-engineered CsPbBr3 perovskite quantum dots (PQDs). This fabrication approach allows the devices to emulate fundamental synaptic behaviors, encompassing excitatory postsynaptic current, paired-pulse facilitation, the transition from short-to-long-term memory, and the concept of "learning experience." Notably, the phototransistor, incorporating the blend of the PDPPNA and CsPbBr3 PQDs washed with ethyl acetate, achieved an exceptional memory ratio of 104. Simultaneously, the same device exhibited an impressive paired-pulse facilitation ratio of 223% at a moderate operating voltage of -4 V and an extraordinarily low energy consumption of 0.215 aJ at an ultralow operating voltage of -0.1 mV. Consequently, these low-voltage synaptic devices, constructed with a pendant side-chain engineering of organic semiconductors and a ligand density engineering of PQDs through a simple fabrication process, exhibit substantial potential for replicating the visual memory capabilities of the human brain.

18.
Heliyon ; 10(15): e35466, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170457

ABSTRACT

Background: Adolescents diagnosed with depression are particularly susceptible to anxiety and depressive symptoms, this vulnerability often diminishes their future expectations and overall outlook on life. The objective of this research was to scrutinize the associated risk factors of adolescent depression and delineated the interplay between anxiety and depressive symptoms. Concurrently, it sought to ascertain the latent mediating effects of hope levels and coping strategies within this framework. Methods: A mixed-methods research approach was employed. For the qualitative component, 18 adolescents with depression were interviewed following a semi-structured interview guide, with sessions audio-recorded. The data were subsequently transcribed and subjected to thematic content analysis. In the quantitative phase, a cross-sectional online survey was administered to 210 adolescents diagnosed with depression using Questionnaire Star, with data analysis performed using SPSS25.0 and AMOS 24.0. Results: The qualitative analysis identified three major themes and nine categories as key risk factors influencing the onset of adolescent depression. Three major themes were generated: school factors, family factors, and other factors. Nine categories were generated: heavy academic load, strained peer, and teacher-student relationships; unstable family structures, internal familial conflicts, and high parental expectations; a strong sense of social isolation, insufficient sexual education, and prevalent suicidal ideation or attempts. A nurturing and supportive school environment significantly bolsters adolescents' sense of hope and coping abilities, while a warm and encouraging family setting effectively mitigates psychological stress. Conversely, heightened loneliness and the onset of suicidal ideation are frequently linked to diminished hope and the adoption of maladaptive coping strategies. Hence, to comprehensively understand the intricate interplay of these factors, this study concentrated on the levels of hope and coping mechanisms, investigating their potential mediating role in adolescent anxiety and depression. Quantitative analysis revealed a positive correlation between anxiety and depression (r = 0.767, p<0.01). Additionally, it was found that hope levels and coping strategies mediated the relationship between anxiety and depressive symptoms (ß = -0.24-0.84 = 0.20, p < 0.001; ß = 0.19-0.51 = -0.10, p < 0.01), with the mediating influence of hope levels being more significant than that of coping strategies. Conclusion: Enhancing hope levels and fostering positive coping strategies are instrumental in aiding adolescents with depression to alleviate their anxiety and depressive symptoms. Moreover, this study underscored the importance of focusing on adolescents' mental health and providing them with emotional support, thereby increasing their hope levels and encouraging the adoption of positive coping mechanisms to effectively address their challenges.

19.
Sci Bull (Beijing) ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39181785

ABSTRACT

Exposure to polycyclic aromatic hydrocarbons (PAHs) in the Chinese population was among the highest globally and associated with various adverse effects. This study examines the impact of China's two-phase clean air initiatives, namely the Air Pollution Prevention and Control Action Plan (APPCAP) in 2013-2017 and the Blue-Sky Defense War (BSDW) in 2018-2020, on PAH levels and human exposures in Beijing. To evaluate the effects of APPCAP, we measured 16 PAHs in 287 PM2.5 samples collected in Beijing and 9 PAH metabolites in 358 urine samples obtained from 54 individuals who traveled from Los Angeles to Beijing between 2014 and 2018. The concentration of PM2.5-bound benzo[a]pyrene equivalents (BaPeq) decreased by 88.5% in 2014-2018 due to reduced traffic, coal, and biomass emissions. PAH metabolite concentrations in travelers' urine decreased by 52.3% in Beijing, correlated with changes in PM2.5 and NO2 levels. In contrast, no significant changes were observed in Los Angeles. To evaluate BSDW's effects, we collected 123 additional PM2.5 samples for PAH measurements in 2019-2021. We observed sustained reductions in BaPeq concentrations attributable to reductions in coal and biomass emissions during the BSDW phase, but those from traffic sources remained unchanged. After accounting for meteorological factors, China's two-phase clean air initiatives jointly reduced Beijing's PM2.5-bound BaPeq concentrations by 96.6% from 2014 to 2021. These findings provide compelling evidence for the effectiveness of China's clean air actions in mitigating population exposure to PAHs in Beijing.

20.
Environ Sci Technol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190315

ABSTRACT

Epidemiologic evidence has emerged showing an association between exposure to air pollution and increased risks of gestational diabetes mellitus (GDM). This study examines the effect of low-level air pollution exposure on a subclinical biomarker of hyperglycemia (i.e., HbA1c) in pregnant people without diabetes before conception. We measured HbA1c in 577 samples repeatedly collected from 224 pregnant people in Rochester, NY, and estimated residential concentrations of PM2.5 and NO2 using high-resolution spatiotemporal models. We observed a U-shaped trajectory of HbA1c during pregnancy with average HbA1c levels of 5.13 (±0.52), 4.97 (±0.54), and 5.43 (±0.40)% in early-, mid-, and late pregnancy, respectively. After adjustment for the U-shaped trajectory and classic GDM risk factors, each interquartile range increase in 10 week NO2 concentration (8.0 ppb) was associated with 0.09% (95% CI: 0.02 to 0.16%) and 0.18% (95% CI: 0.08 to 0.28%) increases in HbA1c over the entire pregnancy and in late pregnancy, respectively. These associations remained robust among participants without GDM. Using separate distributed lag models, we identified a period between 8th and 14th gestational weeks as critical windows responsible for increased levels of HbA1c measured at 14th, 22nd, and 30th gestational weeks. Our results suggest that low-level air pollution contributes to hyperglycemia in medically low-risk pregnant people.

SELECTION OF CITATIONS
SEARCH DETAIL