Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Bioorg Med Chem Lett ; 19(15): 4350-3, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19515564

ABSTRACT

The synthesis and optimisation of HCV NS5B polymerase inhibitors with improved potency versus the existing compound 1 is described. Substitution in the benzothiadiazine portion of the molecule, furnishing improvement in potency in the high protein Replicon assay, is highlighted, culminating in the discovery of 12h, a highly potent oxyacetamide derivative.


Subject(s)
Antiviral Agents/chemical synthesis , Benzothiadiazines/chemistry , Chemistry, Pharmaceutical/methods , Hepacivirus/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/pharmacology , Benzothiadiazines/pharmacology , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Molecular Structure , Rats , Structure-Activity Relationship
4.
J Med Chem ; 49(3): 971-83, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451063

ABSTRACT

Recently, we disclosed a new class of HCV polymerase inhibitors discovered through high-throughput screening (HTS) of the GlaxoSmithKline proprietary compound collection. This interesting class of 3-(1,1-dioxo-2H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones potently inhibits HCV polymerase enzymatic activity and inhibits the ability of the subgenomic HCV replicon to replicate in Huh-7 cells. This report will focus on the structure-activity relationships (SAR) of substituents on the quinolinone ring, culminating in the discovery of 1-(2-cyclopropylethyl)-3-(1,1-dioxo-2H-1,2,4-benzothiadiazin-3-yl)-6-fluoro-4-hydroxy-2(1H)-quinolinone (130), an inhibitor with excellent potency in biochemical and cellular assays possessing attractive molecular properties for advancement as a clinical candidate. The potential for development and safety assessment profile of compound 130 will also be discussed.


Subject(s)
Antiviral Agents/chemical synthesis , Benzothiadiazines/chemical synthesis , Hepacivirus/enzymology , Quinolones/chemical synthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Thiadiazines/chemical synthesis , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzothiadiazines/chemistry , Benzothiadiazines/pharmacology , Biological Availability , Blood Proteins/metabolism , Cell Line , Crystallography, X-Ray , Dogs , Genotype , Half-Life , Hepacivirus/genetics , Macaca fascicularis , Models, Molecular , Molecular Structure , Mutation , Protein Binding , Quinolones/chemistry , Quinolones/pharmacology , RNA-Dependent RNA Polymerase/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiadiazines/chemistry , Thiadiazines/pharmacology
5.
Bioorg Med Chem Lett ; 16(8): 2205-8, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16455253

ABSTRACT

An efficient, asymmetric solid-phase synthesis of benzothiadiazine-substituted tetramic acids is reported. Starting from commercially available chiral Fmoc-protected alpha-amino acids loaded onto Wang resin, Fmoc removal, reductive amination followed by amide bond formation, and base-catalyzed cyclization with simultaneous cleavage from the resin provided the desired products. Compounds described are potent inhibitors of the hepatitis C virus RNA-dependent RNA polymerase.


Subject(s)
Antiviral Agents/pharmacology , Benzothiadiazines/chemical synthesis , Hepacivirus/drug effects , Pyrrolidinones/chemical synthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Antiviral Agents/therapeutic use , Benzothiadiazines/pharmacology , Catalysis , Cyclization , Drug Resistance, Viral , Hepacivirus/enzymology , Hepatitis C/drug therapy , Humans , Inhibitory Concentration 50 , Pyrrolidinones/pharmacology
6.
Bioorg Med Chem Lett ; 15(6): 1553-6, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15745795

ABSTRACT

HTS of the compound collection for inhibition of the HCV RNA dependent RNA polymerase identified two 168 member N-acyl pyrrolidine combinatorial mixture hits. Deconvolution and expansion of these mixtures by solid phase synthesis to establish initial SAR and identify a potent inhibitor is reported.


Subject(s)
Hepacivirus/enzymology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Combinatorial Chemistry Techniques , Molecular Structure
7.
Biochem Biophys Res Commun ; 313(2): 343-50, 2004 Jan 09.
Article in English | MEDLINE | ID: mdl-14684166

ABSTRACT

The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) encodes an RNA-dependent RNA polymerase (RdRp) which is essential for viral replication. NS5B expression in bacteria generated 20- to 50-fold lower yield and 100-fold less product per mol of enzyme for gentoype 1a RdRp than type 1b. Further, unlike type 1b RdRp, type 1a enzyme failed to exhibit cooperative properties in the assays described herein. Differences in thermal stability may partially account for the inability to efficiently oligomerize. Superose gel filtration analyses confirm differences between these RdRp preparations, although affinity for the column rather than size may account for the differences in migration. To further address this complexity, a panel of RdRp type 1a-type 1b chimeras were evaluated and implicate a role for the thumb subdomain of genotype 1b RdRp as critical for cooperative function.


Subject(s)
Hepacivirus/enzymology , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Chromatography, Gel , Circular Dichroism , DNA Primers/genetics , DNA Primers/metabolism , Enzyme Stability , Escherichia coli/metabolism , Genotype , Hot Temperature , Isoenzymes/genetics , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Molecular Sequence Data , RNA/metabolism , RNA-Dependent RNA Polymerase/isolation & purification , Recombinant Fusion Proteins/isolation & purification , Viral Nonstructural Proteins/metabolism
8.
Virology ; 312(2): 270-80, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12919733

ABSTRACT

The GB virus-B (GBV-B) nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) with greater than 50% sequence similarity to the hepatitis C virus (HCV) NS5B. Recombinant GBV-B NS5B was reported to possess RdRp activity (W. Zhong et al., 2000, J. Viral Hepat. 7, 335-342). In this study, the GBV-B RdRp was examined more thoroughly for different RNA synthesis activities, including primer-extension, de novo initiation, template switch, terminal nucleotide addition, and template specificity. The results can be compared with previous characterizations of the HCV RdRp. The two RdRps share similarities in terms of metal ion and template preference, the abilities to add nontemplated nucleotides, perform both de novo initiation and extension from a primer, and switch templates. However, several differences in RNA synthesis between the GBV-B and HCV RdRps were observed, including (i) optimal temperatures for activity, (ii) ranges of Mn(2+) concentration tolerated for activity, and (iii) cation requirements for de novo RNA synthesis and terminal transferase activity. To assess whether the recombinant GBV-B RdRp may represent a relevant surrogate system for testing HCV antiviral agents, two compounds demonstrated to be active at nanomolar concentrations against HCV NS5B were tested on the GBV RdRp. A chain terminating nucleotide analog could prevent RNA synthesis, while a nonnucleoside HCV inhibitor was unable to affect RNA synthesis by the GBV RdRp.


Subject(s)
GB virus B/enzymology , RNA-Dependent RNA Polymerase/metabolism , Base Sequence , GB virus B/drug effects , Molecular Sequence Data , Nucleotides/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/isolation & purification , Templates, Genetic
9.
J Biol Chem ; 277(41): 38322-7, 2002 Oct 11.
Article in English | MEDLINE | ID: mdl-12167642

ABSTRACT

The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. We established a biochemical RNA synthesis assay, using purified recombinant NS5B lacking the C-terminal 21 amino acid residues, to identify potential polymerase inhibitors from a high throughput screen of the GlaxoSmithKline proprietary compound collection. The benzo-1,2,4-thiadiazine compound 1 was found to be a potent, highly specific inhibitor of NS5B. This agent interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitive with respect to GTP. Furthermore, in the absence of an in vitro-reconstituted HCV replicase assay employing viral and host proteins, the ability of compound 1 to inhibit NS5B-directed viral RNA replication was determined using the Huh7 cell-based HCV replicon system. Compound 1 reduced viral RNA in replicon cells with an IC(50) of approximately 0.5 microm, suggesting that the inhibitor was able to access the perinuclear membrane and inhibit the polymerase activity in the context of a replicase complex. Preliminary structure-activity studies on compound 1 led to the identification of a modified inhibitor, compound 4, showing an improvement in both biochemical and cell-based potency. Lastly, data are presented suggesting that these compounds interfere with the formation of negative and positive strand progeny RNA by a similar mode of action. Investigations are ongoing to assess the potential utility of such agents in the treatment of chronic HCV disease.


Subject(s)
Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , RNA-Dependent RNA Polymerase/metabolism , Thiadiazines/pharmacology , Viral Nonstructural Proteins/metabolism , Cell Line , Circular Dichroism , Drug Evaluation, Preclinical , Enzyme Stability , Hepacivirus/genetics , Humans , Molecular Structure , Protein Denaturation , RNA/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Temperature , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...