Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 15(2): 229-37, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27050514

ABSTRACT

Mitochondrial dysfunction has been increasingly linked to neurodevelopmental disorders such as intellectual disability, childhood epilepsy, and autism spectrum disorder, conditions also associated with cortical GABAergic interneuron dysfunction. Although interneurons have some of the highest metabolic demands in the postnatal brain, the importance of mitochondria during interneuron development is unknown. We find that interneuron migration from the basal forebrain to the neocortex is highly sensitive to perturbations in oxidative phosphorylation. Both pharmacologic and genetic inhibition of adenine nucleotide transferase 1 (Ant1) disrupts the non-radial migration of interneurons, but not the radial migration of cortical projection neurons. The selective dependence of cortical interneuron migration on oxidative phosphorylation may be a mechanistic pathway upon which multiple developmental and metabolic pathologies converge.


Subject(s)
Cell Movement , Cerebral Cortex/pathology , Mitochondria/metabolism , Mitochondrial Diseases/pathology , Neurons/metabolism , Adenine Nucleotide Translocator 1/deficiency , Adenine Nucleotide Translocator 1/metabolism , Animals , Centrosome/metabolism , Embryo, Mammalian/pathology , Female , Interneurons/pathology , Male , Mice, Inbred C57BL , Mutation/genetics , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...