Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(12): 113501, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38039128

ABSTRACT

Upon proinflammatory challenges, endothelial cell surface presentation of the leukocyte receptor P-selectin, together with the stabilizing co-factor CD63, is needed for leukocyte capture and is mediated via demand-driven exocytosis from the Weibel-Palade bodies that fuse with the plasma membrane. We report that neutrophil recruitment to activated endothelium is significantly reduced in mice deficient for the endolysosomal cation channel TPC2 and in human primary endothelial cells with pharmacological TPC2 block. We observe less CD63 signal in whole-mount stainings of proinflammatory-activated cremaster muscles from TPC2 knockout mice. We find that TPC2 is activated and needed to ensure the transfer of CD63 from endolysosomes via Weibel-Palade bodies to the plasma membrane to retain P-selectin on the cell surface of human primary endothelial cells. Our findings establish TPC2 as a key element to leukocyte interaction with the endothelium and a potential pharmacological target in the control of inflammatory leukocyte recruitment.


Subject(s)
P-Selectin , Two-Pore Channels , Mice , Humans , Animals , P-Selectin/metabolism , Endothelial Cells/metabolism , Weibel-Palade Bodies/metabolism , Cell Adhesion , Leukocytes/metabolism , Endothelium, Vascular/metabolism
2.
Adv Sci (Weinh) ; 8(18): e2100694, 2021 09.
Article in English | MEDLINE | ID: mdl-34278745

ABSTRACT

The transport of membrane impermeable compounds into cells is a prerequisite for the efficient cellular delivery of hydrophilic and amphiphilic compounds and drugs. Transport into the cell's cytosolic compartment should ideally be controllable and it should involve biologically compatible and degradable vehicles. Addressing these challenges, nanocontainers based on cyclodextrin amphiphiles that are stabilized by a biodegradable peptide shell are developed and their potential to deliver fluorescently labeled cargo into human cells is analyzed. Host-guest mediated self-assembly of a thiol-containing short peptide or a cystamine-cross-linked polypeptide shell on cyclodextrin vesicles produce short peptide-shelled (SPSVss ) or polypeptide-shelled vesicles (PPSVss ), respectively, with redox-responsive and biodegradable features. Whereas SPSVss are permeable and less stable, PPSVss effectively encapsulate cargo and show a strictly regulated release of membrane impermeable cargo triggered by either reducing conditions or peptidase treatment. Live cell experiments reveal that the novel PPSVSS are readily internalized by primary human endothelial cells (human umbilical vein endothelial cells) and cervical cancer cells and that the reductive microenvironment of the cells' endosomes trigger release of the hydrophilic cargo into the cytosol. Thus, PPSVSS represent a highly efficient, biodegradable, and tunable system for overcoming the plasma membrane as a natural barrier for membrane-impermeable cargo.


Subject(s)
Cyclodextrins/metabolism , Drug Delivery Systems/methods , Drug Liberation , Endothelial Cells/metabolism , Hydrophobic and Hydrophilic Interactions , Peptides/metabolism , Humans , Nanoparticles/metabolism
3.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33974911

ABSTRACT

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Subject(s)
Chaetomium , Fungal Proteins , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Phosphatidylinositol Phosphates , Serine C-Palmitoyltransferase , Chaetomium/chemistry , Chaetomium/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Lysosomes/chemistry , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/chemistry , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphatidylinositol Phosphates/chemistry , Phosphatidylinositol Phosphates/metabolism , Serine C-Palmitoyltransferase/chemistry , Serine C-Palmitoyltransferase/metabolism
4.
Chemistry ; 26(71): 17176-17182, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-32720444

ABSTRACT

A dicationic imidazolium salt is described and investigated towards its application for gene transfer. The polar head group and the long alkyl chains in the backbone contribute to a lipid-like behavior, while an alkyl ammonium group provides the ability for crucial electrostatic interaction for the transfection process. Detailed biophysical studies regarding its impact on biological membrane models and the propensity of vesicle fusion are presented. Fluorescence spectroscopy, atomic force microscopy and confocal fluorescence microscopy show that the imidazolium salt leads to negligible changes in lipid packing, while displaying distinct vesicle fusion properties. Cell culture experiments reveal that mixed liposomes containing the novel imidazolium salt can serve as plasmid DNA delivery vehicles. In contrast, a structurally similar imidazolium salt without a second positive charge showed no ability to support DNA transfection into cultured cells. Thus, we introduce a novel and variable structural motif for cationic lipids, expanding the field of lipofection agents.


Subject(s)
Cations/chemistry , Imidazoles/chemistry , Lipids , Liposomes , DNA/chemistry , Transfection
5.
Chem Sci ; 9(40): 7822-7828, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30429991

ABSTRACT

We report cationic Ir(iii) complexes functionalized with adamantyl groups designed to bind to ß-cyclodextrin vesicles (CDV) with high affinity (K a = 1 × 106 M-1). The emission of the complexes is tuned by changing the nature of the cyclometalating ligands. The host-guest adduct of CDV and Ir(iii) complexes shows increased and significantly blue-shifted emission due to the lower mobility of the Ir(iii)-complexes residing in the less polar environment of the vesicle surface. Ir(iii)-decorated CDV are efficiently taken up by cells and can be used in live cell imaging. The CDV act as carriers to transport the phosphorescent complexes into cells where they selectively stain mitochondria.

SELECTION OF CITATIONS
SEARCH DETAIL
...