Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Syst ; 12(9): 885-899.e8, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34352221

ABSTRACT

Identifying the particular transcription factors that maintain cell type in vitro is important for manipulating cell type. Identifying such transcription factors by their cell-type-specific expression or their involvement in developmental regulation has had limited success. We hypothesized that because cell type is often resilient to perturbations, the transcriptional response to perturbations would reveal identity-maintaining transcription factors. We developed perturbation panel profiling (P3) as a framework for perturbing cells across many conditions and measuring gene expression responsiveness transcriptome-wide. In human iPSC-derived cardiac myocytes, P3 showed that transcription factors important for cardiac myocyte differentiation and maintenance were among the most frequently upregulated (most responsive). We reasoned that one function of responsive genes may be to maintain cellular identity. We identified responsive transcription factors in fibroblasts using P3 and found that suppressing their expression led to enhanced reprogramming. We propose that responsiveness to perturbations is a property of transcription factors that help maintain cellular identity in vitro. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Induced Pluripotent Stem Cells , Transcription Factors , Cell Differentiation/genetics , Fibroblasts/metabolism , Humans , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Nature ; 573(7774): 430-433, 2019 09.
Article in English | MEDLINE | ID: mdl-31511695

ABSTRACT

Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.


Subject(s)
CD8-Positive T-Lymphocytes , Endomyocardial Fibrosis/therapy , Immunotherapy, Adoptive , Animals , Antigens, Surface/immunology , CD8-Positive T-Lymphocytes/immunology , Endomyocardial Fibrosis/immunology , Fibroblasts/immunology , Humans , Male , Mice , Ovalbumin/immunology , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...