Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 384(3): 382-392, 2023 03.
Article in English | MEDLINE | ID: mdl-36507845

ABSTRACT

Activation of soluble guanylate cyclase (sGC) to restore cyclic guanosine monophosphate (cGMP) and improve functionality of nitric oxide (NO) pathways impaired by oxidative stress is a potential treatment of diabetic and chronic kidney disease. We report the pharmacology of BI 685509, a novel, orally active small molecule sGC activator with disease-modifying potential. BI 685509 and human sGC α1/ß1 heterodimer containing a reduced heme group produced concentration-dependent increases in cGMP that were elevated modestly by NO, whereas heme-free sGC and BI 685509 greatly enhanced cGMP with no effect of NO. BI 685509 increased cGMP in human and rat platelet-rich plasma treated with the heme-oxidant ODQ; respective EC50 values were 467 nM and 304 nM. In conscious telemetry-instrumented rats, BI 685509 did not affect mean arterial pressure (MAP) or heart rate (HR) at 3 and 10 mg/kg (p.o.), whereas 30 mg/kg decreased MAP and increased HR. Ten days of BI 685509 at supratherapeutic doses (60 or 100 mg/kg p.o., daily) attenuated MAP and HR responses to a single 100 mg/kg challenge. In the ZSF1 rat model, BI 685509 (1, 3, 10, and 30 mg/kg per day, daily) coadministered with enalapril (3 mg/kg per day) dose-dependently reduced proteinuria and incidence of glomerular sclerosis; MAP was modestly reduced at the higher doses versus enalapril. In the 7-day rat unilateral ureteral obstruction model, BI 685509 dose-dependently reduced tubulointerstitial fibrosis (P < 0.05 at 30 mg/kg). In conclusion, BI 685509 is a potent, orally bioavailable sGC activator with clear renal protection and antifibrotic activity in preclinical models of kidney injury and disease. SIGNIFICANCE STATEMENT: BI 685509 is a novel small soluble guanylate cyclase (sGC) molecule activator that exhibits an in vitro profile consistent with that of an sGC activator. BI 685509 reduced proteinuria and glomerulosclerosis in the ZSF1 rat, a model of diabetic kidney disease (DKD), and reduced tubulointerstitial fibrosis in a rat 7-day unilateral ureteral obstruction model. Thus, BI 685509 is a promising new therapeutic agent and is currently in phase II clinical trials for chronic kidney disease and DKD.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Rats , Humans , Animals , Soluble Guanylyl Cyclase/metabolism , Guanylate Cyclase/metabolism , Ureteral Obstruction/pathology , Kidney/metabolism , Disease Progression , Proteinuria/drug therapy , Fibrosis , Enalapril/therapeutic use , Nitric Oxide/metabolism , Cyclic GMP/metabolism
2.
J Pharmacol Exp Ther ; 356(3): 712-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26729306

ABSTRACT

Therapies that restore renal cGMP levels are hypothesized to slow the progression of diabetic nephropathy. We investigated the effect of BI 703704, a soluble guanylate cyclase (sGC) activator, on disease progression in obese ZSF1 rats. BI 703704 was administered at doses of 0.3, 1, 3, and 10 mg/kg/d to male ZSF1 rats for 15 weeks, during which mean arterial pressure (MAP), heart rate (HR), and urinary protein excretion (UPE) were determined. Histologic assessment of glomerular and interstitial lesions was also performed. Renal cGMP levels were quantified as an indicator of target modulation. BI 703704 resulted in sGC activation, as evidenced by dose-dependent increases in renal cGMP levels. After 15 weeks of treatment, sGC activation resulted in dose-dependent decreases in UPE (from 463 ± 58 mg/d in vehicle controls to 328 ± 55, 348 ± 23, 283 ± 45, and 108 ± 23 mg/d in BI 703704-treated rats at 0.3, 1, 3, and 10 mg/kg, respectively). These effects were accompanied by a significant reduction in the incidence of glomerulosclerosis and interstitial lesions. Decreases in MAP and increases in HR were only observed at the high dose of BI 703704. These results are the first demonstration of renal protection with sGC activation in a nephropathy model induced by type 2 diabetes. Importantly, beneficial effects were observed at doses that did not significantly alter MAP and HR.


Subject(s)
Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/enzymology , Disease Progression , Enzyme Activators/pharmacology , Guanylate Cyclase/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Enalaprilat/chemistry , Enalaprilat/pharmacology , Enalaprilat/therapeutic use , Enzyme Activators/chemistry , Enzyme Activators/therapeutic use , Male , Rats , Rats, Zucker , Soluble Guanylyl Cyclase
3.
AIDS Care ; 18 Suppl 1: S59-61, 2006.
Article in English | MEDLINE | ID: mdl-16938676

ABSTRACT

Nearly 13,000 Louisiana residents with HIV/AIDS were estimated to be living in areas affected by Hurricane Katrina. Although minimal general outpatient primary care services were available within a few weeks following the hurricane in New Orleans, access to antiretroviral medications was an early problem. The largest HIV care provider, the Medical Center of Louisiana at New Orleans HIV Outpatient Program (HOP), was able to assist in obtaining medications mid-October and opened an HIV clinic the first week of November in a temporary location. Services have slowly expanded in the five months since the HOP clinic opened but remain limited. Six months following the hurricane, microbiologic studies are still unable to be performed in clinic and uninsured patients must travel at least 70 miles for subspecialty care. The authors suggest recommendations for disaster planning for other centers caring for persons with HIV/AIDS based on the New Orleans experience.


Subject(s)
Ambulatory Care Facilities/standards , Anti-Retroviral Agents/therapeutic use , Delivery of Health Care , Disasters , HIV Infections/drug therapy , Delivery of Health Care/methods , Delivery of Health Care/standards , Health Services Accessibility/standards , Humans , Louisiana/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...