Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 18(1): 212-24, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16361393

ABSTRACT

We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.


Subject(s)
Antioxidants/metabolism , Arabidopsis Proteins , Arabidopsis , Phosphotransferases , Phytol/metabolism , Seeds/metabolism , Vitamin E/metabolism , Amino Acid Sequence , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/classification , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Computational Biology , Genetic Complementation Test , Molecular Sequence Data , Mutation , Phosphotransferases/classification , Phosphotransferases/genetics , Phosphotransferases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phytol/chemistry , Plants, Genetically Modified , Sequence Alignment , Synechocystis/genetics , Synechocystis/metabolism , Transgenes
2.
Plant Cell ; 15(12): 3007-19, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14630966

ABSTRACT

We report the identification and biotechnological utility of a plant gene encoding the tocopherol (vitamin E) biosynthetic enzyme 2-methyl-6-phytylbenzoquinol methyltransferase. This gene was identified by map-based cloning of the Arabidopsis mutation vitamin E pathway gene3-1 (vte3-1), which causes increased accumulation of delta-tocopherol and decreased gamma-tocopherol in the seed. Enzyme assays of recombinant protein supported the hypothesis that At-VTE3 encodes a 2-methyl-6-phytylbenzoquinol methyltransferase. Seed-specific expression of At-VTE3 in transgenic soybean reduced seed delta-tocopherol from 20 to 2%. These results confirm that At-VTE3 protein catalyzes the methylation of 2-methyl-6-phytylbenzoquinol in planta and show the utility of this gene in altering soybean tocopherol composition. When At-VTE3 was coexpressed with At-VTE4 (gamma-tocopherol methyltransferase) in soybean, the seed accumulated to >95% alpha-tocopherol, a dramatic change from the normal 10%, resulting in a greater than eightfold increase of alpha-tocopherol and an up to fivefold increase in seed vitamin E activity. These findings demonstrate the utility of a gene identified in Arabidopsis to alter the tocopherol composition of commercial seed oils, a result with both nutritional and food quality implications.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Methyltransferases/genetics , Soybean Oil/metabolism , Tocopherols/metabolism , Vitamin E/biosynthesis , Alleles , Amino Acid Sequence , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Methyltransferases/metabolism , Molecular Sequence Data , Mutation , Plants, Genetically Modified , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Glycine max/enzymology , Glycine max/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...