Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 363: 389-401, 2023 11.
Article in English | MEDLINE | ID: mdl-37741463

ABSTRACT

RNA therapies have recently taken a giant leap forward with the approval of Onpattro™, a siRNA therapy delivered using a lipid nanoparticle (LNP), and the LNP-enabled mRNA vaccines against COVID-19, which are the first mRNA drugs to reach the marketplace. The latter medicines have illustrated that stability is a significant challenge in the distribution of RNA drugs using non-viral delivery systems, particularly in areas without cold chain storage. Here, we describe a proof-of-concept study on the engineering of an LNP mRNA formulation suitable for spray drying. This process produced a dry powder formulation that maintained stability and preserved mRNA functionality with increased performance compared to liquid formulations stored two weeks at 4 °C. Intratracheal delivery of spray dried LNPs loaded with eGFP mRNA to rats resulted in the production of the eGFP protein in a range of cell types including bronchiolar epithelial cells, macrophages and type II pneumocytes; cell types involved in adaptive immunity and which would be valuable targets for inhaled vaccines against respiratory pathogens. Together, these data show that spray drying of LNPs enhances their stability and may enable RNA delivery to the lung for protein replacement therapy, gene editing, vaccination, and beyond.


Subject(s)
COVID-19 Vaccines , Nanoparticles , Rats , Animals , Humans , RNA, Messenger , Liposomes
2.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L536-L547, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36098422

ABSTRACT

Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.


Subject(s)
Cystic Fibrosis , Epithelial Sodium Channels , Humans , Rats , Sheep , Animals , Epithelial Sodium Channel Blockers/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channel Blockers/therapeutic use , Amiloride/pharmacology , Mucociliary Clearance/physiology , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis/drug therapy , Respiratory Mucosa
3.
PLoS One ; 16(7): e0254248, 2021.
Article in English | MEDLINE | ID: mdl-34242292

ABSTRACT

We have modified the periplasmic Escherichia coli glucose/galactose binding protein (GBP) and labelled with environmentally sensitive fluorophores to further explore its potential as a sensor for the evaluation of glucose concentration in airway surface liquid (ASL). We identified E149C/A213R GBP labelled with N,N'-Dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD, emission wavelength maximum 536nm) with a Kd for D-glucose of 1.02mM and a fluorescence dynamic range of 5.8. This sensor was specific for D-glucose and exhibited fluorescence stability in experiments for several hours. The use of E149C/A213R GBP-IANBD in the ASL of airway cells grown at air-liquid-interface (ALI) detected an increase in glucose concentration 10 minutes after raising basolateral glucose from 5 to 15mM. This sensor also reported a greater change in ASL glucose concentration in response to increased basolateral glucose in H441 airway cells compared to human bronchial epithelial cells (HBEC) and there was less variability with HBEC data than that of H441 indicating that HBEC more effectively regulate glucose movement into the ASL. The sensor detected glucose in bronchoalveolar lavage fluid (BALf) from diabetic db/db mice but not normoglycaemic wildtype mice, indicating limited sensitivity of the sensor at glucose concentrations <50µM. Using nasal inhalation of the sensor and spectral unmixing to generate images, E149C/A213R GBP-IANBD fluorescence was detected in luminal regions of cryosections of the murine distal lung that was greater in db/db than wildtype mice. In conclusion, this sensor provides a useful tool for further development to measure luminal glucose concentration in models of lung/airway to explore how this may change in disease.


Subject(s)
Biosensing Techniques , Glucose , Animals , Calcium-Binding Proteins , Epithelial Cells , Mice , Monosaccharide Transport Proteins , Periplasmic Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...