Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 12(15)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382435

ABSTRACT

The focus of this work is to present the feasibility of lowering the supply and return temperatures of district heating networks in order to achieve energy savings through the implementation of feed-forward model predictive control. The current level of district heating technology dictates a need for higher supply temperatures, which is not the case when considering the future outlook. In part, this can be attributed to the fact that current networks are being controlled by operator experience and outdoor temperatures. The prospects of reducing network temperatures can be evaluated by developing a dynamic model of the process which can then be used for control purposes. Two scenarios are presented in this work, to not only evaluate a controller's performance in supplying lower network temperatures, but to also assess the boundaries of the return temperature. In Scenario 1, the historical load is used as a feed-forward signal to the controller, and in Scenario 2, a load prediction model is used as the feed-forward signal. The findings for both scenarios suggest that the new control approach can lead to a load reduction of 12.5% and 13.7% respectively for the heat being supplied to the network. With the inclusion of predictions with increased accuracy on end-user demand and feed-back, the return temperature values can be better sustained, and can lead to a decrease in supply temperatures and an increase in energy savings on the production side.

2.
Chemosphere ; 168: 1523-1530, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27939662

ABSTRACT

The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L-1 were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L-1) at higher surface photosynthetic active radiation (250 and 500 µmol m-2 s-1). Additionally, the rate approached a saturation phase at low MAAS (110 mg L-1) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L-1. The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L-1. The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h-1 and sludge volume index of 31-43 ml g-1 in the studied cases.


Subject(s)
Microalgae/metabolism , Sewage/chemistry , Water Purification/methods , Bioreactors , Chemical Precipitation , Flocculation , Iron/chemistry , Iron/metabolism , Light , Microalgae/radiation effects , Nitrogen/analysis , Nitrogen/metabolism , Wastewater/chemistry
3.
Water Res ; 91: 277-84, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26803263

ABSTRACT

Integration of the microalgae and activated sludge (MAAS) process in municipal wastewater treatment and biogas production from recovered MAAS was investigated by studying the hydraulic retention time (HRT) of semi-continuous photo-bioreactors. An average total nitrogen (TN) removal efficiency (RE) of maximum 81.5 ± 5.1 and 64.6 ± 16.2% was achieved at 6 and 4 days HRT. RE of total phosphorous (TP) increased slightly at 6 days (80 ± 12%) HRT and stabilized at 4 days (56 ± 5%) and 2 days (55.5 ± 5.5%) HRT due to the fluctuations in COD and N/P mass ratio of the periodic wastewater. COD and organic carbon were removed efficiently and a rapidly settleable MAAS with a sludge volume index (SVI_10) of less than 117 mL g(-1) was observed at all HRTs. The anaerobic digestion of the untreated MAAS showed a higher biogas yield of 349 ± 10 mL g VS(-1) with 2 days HRT due to a low solids retention time (SRT). Thermal pretreatment of the MAAS (120 °C, 120 min) did not show any improvement with biogas production at 6 days (269 ± 3 (untreated) and 266 ± 16 (treated) mL gVS(-1)), 4 days (258 ± 11(untreated) and 263 ± 10 (treated) mL gVS(-1)) and 2 days (308 ± 19 mL (treated) gVS(-1)) HRT. Hence, the biogas potential tests showed that the untreated MAAS was a feasible substrate for biogas production. Results from this proof of concept support the application of MAAS in wastewater treatment for Swedish conditions to reduce aeration, precipitation chemicals and CO2 emissions.


Subject(s)
Microalgae/metabolism , Sewage/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Biofuels/analysis , Bioreactors , Chlorella/metabolism , Geologic Sediments/analysis , Hydrodynamics , Scenedesmus/metabolism , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL