Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Physiol Rep ; 5(11)2017 Jun.
Article in English | MEDLINE | ID: mdl-28592587

ABSTRACT

The transmembrane receptor guanylyl cyclase-C (GC-C), expressed on enterocytes along the intestine, is the molecular target of the GC-C agonist peptide linaclotide, an FDA-approved drug for treatment of adult patients with Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation. Polarized human colonic intestinal cells (T84, CaCo-2BBe) rat and human intestinal tissues were employed to examine cellular signaling and cystic fibrosis transmembrane conductance regulator (CFTR)-trafficking pathways activated by linaclotide using confocal microscopy, in vivo surface biotinylation, and protein kinase-II (PKG-II) activity assays. Expression and activity of GC-C/cGMP pathway components were determined by PCR, western blot, and cGMP assays. Fluid secretion as a marker of CFTR cell surface translocation was determined using in vivo rat intestinal loops. Linaclotide treatment (30 min) induced robust fluid secretion and translocation of CFTR from subapical compartments to the cell surface in rat intestinal loops. Similarly, linaclotide treatment (30 min) of T84 and CaCo-2BBe cells increased cell surface CFTR levels. Linaclotide-induced activation of the GC-C/cGMP/PKGII signaling pathway resulted in elevated intracellular cGMP and pVASPser239 phosphorylation. Inhibition or silencing of PKGII significantly attenuated linaclotide-induced CFTR trafficking to the apical membrane. Inhibition of protein kinase-A (PKA) also attenuated linaclotide-induced CFTR cell surface trafficking, implying cGMP-dependent cross-activation of PKA pathway. Together, these findings support linaclotide-induced activation of the GC-C/cGMP/PKG-II/CFTR pathway as the major pathway of linaclotide-mediated intestinal fluid secretion, and that linaclotide-dependent CFTR activation and recruitment/trafficking of CFTR from subapical vesicles to the cell surface is an important step in this process.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Guanylyl Cyclase C Agonists/pharmacology , Intestinal Mucosa/metabolism , Peptides/pharmacology , Signal Transduction , Animals , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/metabolism , Humans , Intestinal Mucosa/drug effects , Male , Protein Transport , Rats , Rats, Sprague-Dawley , Receptors, Guanylate Cyclase-Coupled/metabolism
2.
PLoS One ; 9(9): e108916, 2014.
Article in English | MEDLINE | ID: mdl-25275393

ABSTRACT

Central nervous system (CNS) administration of angiotensin II (Ang II) raises blood pressure (BP). The rise in BP reflects increased sympathetic outflow and a slower neuromodulatory pressor mechanism mediated by CNS mineralocorticoid receptors (MR). We investigated the hypothesis that the sustained phase of hypertension is associated also with elevated circulating levels of endogenous ouabain (EO), and chronic stimulation of arterial calcium transport proteins including the sodium-calcium exchanger (NCX1), the type 6 canonical transient receptor potential protein (TRPC6), and the sarcoplasmic reticulum calcium ATPase (SERCA2). Wistar rats received a chronic intra-cerebroventricular infusion of vehicle (C) or Ang II (A, 2.5 ng/min, for 14 days) alone or combined with the MR blocker, eplerenone (A+E, 5 µg/day), or the aldosterone synthase inhibitor, FAD286 (A+F, 25 µg/day). Conscious mean BP increased (P<0.05) in A (123 ± 4 mm Hg) vs all other groups. Blood, pituitary and adrenal samples were taken for EO radioimmunoassay (RIA), and aortas for NCX1, TRPC6 and SERCA2 immunoblotting. Central infusion of Ang II raised plasma EO (0.58 ± 0.08 vs C 0.34 ± 0.07 nM (P<0.05), but not in A + E and A + F groups as confirmed by off-line liquid chromatography (LC)-RIA and LC-multistage mass spectrometry. Two novel isomers of EO were elevated by Ang II; the second less polar isomer increased >50-fold in the A+F group. Central Ang II increased arterial expression of NCX1, TRPC6 and SERCA2 (2.6, 1.75 and 3.7-fold, respectively; P<0.01)) but not when co-infused with E or F. Adrenal and pituitary EO were unchanged. We conclude that brain Ang II activates a CNS-humoral axis involving plasma EO. The elevated EO reprograms peripheral ion transport pathways known to control arterial Na(+) and Ca(2+) homeostasis; this increases contractility and augments sympathetic effects. The new axis likely contributes to the chronic pressor effect of brain Ang II.


Subject(s)
Angiotensin II/pharmacology , Blood Pressure/drug effects , Brain/metabolism , Neurosecretory Systems/blood supply , Neurosecretory Systems/metabolism , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Angiotensin II/administration & dosage , Animals , Brain/drug effects , Calcium/metabolism , Cation Transport Proteins/metabolism , Chromatography, Liquid , Infusions, Intraventricular , Isomerism , Male , Models, Biological , Muscle Cells/drug effects , Muscle Cells/metabolism , Ouabain/blood , Ouabain/chemistry , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Radioimmunoassay , Rats, Wistar , Solid Phase Extraction
3.
Am J Physiol Cell Physiol ; 304(11): C1098-104, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23576580

ABSTRACT

Recent findings indicate that histidine triad nucleotide-binding protein 1 (HINT1) is implicated in the pathophysiology of certain psychiatric disorders and also exhibits tumor suppressor properties. However, the authentic functions of HINT1 in cellular physiology and especially its role in Ca(2+) signaling remain unclear. Here, we studied Ca(2+) signaling in cultured embryonic fibroblasts derived from wild-type control and HINT1 knockout (KO) mice. The resting cytosolic Ca(2+) level (measured with fura-2) was not altered in fibroblasts lacking HINT1. The stored Ca(2+) evaluated by measuring peak amplitude of ATP (10 µM)-induced Ca(2+) transients in Ca(2+)-free medium was significantly larger in HINT1 KO fibroblasts than in wild-type cells. Ca(2+) influx after external Ca(2+) restoration, likely via store- and receptor-operated channels (SOCs and ROCs, respectively), was greatly (by 2-fold) reduced in HINT1 KO fibroblasts. This correlated with a downregulated expression of Orai1 and stromal interacting molecule 1 (STIM1), essential components of store-operated Ca(2+) entry pathway. Expression of canonical transient receptor potential (TRPC)3 and TRPC6, which function as ROCs, was not altered in HINT1 KO fibroblasts. Immunoblots also revealed that Orai1 was downregulated by twofold in brain lysates of HINT1 KO mice compared with the wild-type littermates. Importantly, silencer RNA knockdown of HINT1 in Neuro-2A cells markedly downregulated Orai1 and STIM1 protein expression and significantly (by 2.5-fold) reduced ATP-induced Ca(2+) influx, while ATP-evoked Ca(2+) release was not changed. Thus the study demonstrates a novel function of HINT1 that involves the regulation of SOC-mediated Ca(2+) entry pathway (Orai1 and STIM1), essential for regulation of cellular Ca(2+) homeostasis.


Subject(s)
Calcium Signaling/physiology , Fibroblasts/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Blotting, Western , Calcium Channels/metabolism , Cells, Cultured , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , ORAI1 Protein , RNA, Small Interfering , Stromal Interaction Molecule 1
4.
Adv Exp Med Biol ; 961: 365-74, 2013.
Article in English | MEDLINE | ID: mdl-23224895

ABSTRACT

Arterial smooth muscle (ASM) Na(+)/Ca(2+) exchanger type 1 (NCX1) and TRPC/Orai-containing receptor/store-operated cation channels (ROC/SOC) are clustered with α2 Na(+) pumps in plasma membrane microdomains adjacent to the underlying junctional sarcoplasmic reticulum. This arrangement enables these transport proteins to function as integrated units to help regulate local Na(+) metabolism, Ca(2+) signaling, and arterial tone. They thus influence vascular resistance and blood pressure (BP). For instance, upregulation of NCX1 and TRPC6 has been implicated in the pathogenesis of high BP in several models of essential hypertension. The models include ouabain-induced hypertensive rats, Milan hypertensive rats, and Dahl salt-sensitive hypertensive rats, all of which exhibit elevated plasma ouabain levels. We suggest that these molecular mechanisms are key contributors to the increased vascular resistance ("whole body autoregulation") that elevates BP in essential hypertension. Enhanced expression and function of ASM NCX1 and TRPC/Orai1-containing channels in hypertension implies that these proteins are potential targets for pharmacological intervention.


Subject(s)
Calcium Signaling , Hypertension/metabolism , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Sodium-Calcium Exchanger/metabolism , TRPC Cation Channels/metabolism , Animals , Calcium/metabolism , Disease Models, Animal , Humans , Hypertension/genetics , Hypertension/pathology , Muscle Proteins/genetics , Muscle, Smooth, Vascular/pathology , Rats , Rats, Inbred Dahl , Sodium/metabolism , Sodium-Calcium Exchanger/genetics , TRPC Cation Channels/genetics , TRPC6 Cation Channel
5.
Am J Physiol Cell Physiol ; 304(4): C324-33, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23195071

ABSTRACT

Cardiotonic steroids (CTS) of the strophanthus and digitalis families have opposing effects on long-term blood pressure (BP). This implies hitherto unrecognized divergent signaling pathways for these CTS. Prolonged ouabain treatment upregulates Ca(2+) entry via Na(+)/Ca(2+) exchanger-1 (NCX1) and TRPC6 gene-encoded receptor-operated channels in mesenteric artery smooth muscle cells (ASMCs) in vivo and in vitro. Here, we test the effects of digoxin on Ca(2+) entry and signaling in ASMC. In contrast to ouabain treatment, the in vivo administration of digoxin (30 µg·kg(-1)·day(-1) for 3 wk) did not raise BP and had no effect on resting cytolic free Ca(2+) concentration ([Ca(2+)](cyt)) or phenylephrine-induced Ca(2+) signals in isolated ASMCs. Expression of transporters in the α2 Na(+) pump-NCX1-TRPC6 Ca(2+) signaling pathway was not altered in arteries from digoxin-treated rats. Upregulated α2 Na(+) pumps and a phosphorylated form of the c-SRC protein kinase (pY419-Src, ~4.5-fold) were observed in ASMCs from rats treated with ouabain but not digoxin. Moreover, in primary cultured ASMCs from normal rats, treatment with digoxin (100 nM, 72 h) did not upregulate NCX1 and TRPC6 but blocked the ouabain-induced upregulation of these transporters. Pretreatment of ASMCs with the c-Src inhibitor PP2 (1 µM; 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) but not its inactive analog eliminated the effect of ouabain on NCX1 and TRPC6 expression and ATP-induced Ca(2+) entry. Thus, in contrast to ouabain, the interaction of digoxin with α2 Na(+) pumps is unable to activate c-Src phosphorylation and upregulate the downstream NCX1-TRPC6 Ca(2+) signaling pathway in ASMCs. The inability of digoxin to upregulate c-Src may underlie its inability to raise long-term BP.


Subject(s)
Calcium Signaling/drug effects , Cardiotonic Agents/pharmacology , Digoxin/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Ouabain/pharmacology , src-Family Kinases/metabolism , Animals , Aorta/cytology , Calcium Channels/metabolism , Cardiotonic Agents/administration & dosage , Cells, Cultured , Digoxin/administration & dosage , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Mesenteric Arteries/cytology , Myocytes, Smooth Muscle/drug effects , Nifedipine/pharmacology , Ouabain/administration & dosage , Phosphorylation , Protein Processing, Post-Translational/drug effects , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Sodium-Calcium Exchanger/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , TRPC Cation Channels/metabolism , src-Family Kinases/antagonists & inhibitors
6.
Am J Physiol Heart Circ Physiol ; 303(7): H784-94, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22842068

ABSTRACT

The mechanisms by which NaCl raises blood pressure (BP) in hypertension are unresolved, but much evidence indicates that endogenous ouabain is involved. In rodents, arterial smooth muscle cell (ASMC) Na(+) pumps with an α(2)-catalytic subunit (ouabain EC(50) ≤1.0 nM) are crucial for some hypertension models, even though ≈80% of ASMC Na(+) pumps have an α(1)-subunit (ouabain EC(50) ≈ 5 µM). Human α(1)-Na(+) pumps, however, have high ouabain affinity (EC(50) ≈ 10-20 nM). We used immunoblotting, immunocytochemistry, and Ca(2+) imaging (fura-2) to examine the expression, distribution, and function of Na(+) pump α-subunit isoforms in human arteries and primary cultured human ASMCs (hASMCs). hASMCs express α(1)- and α(2)-Na(+) pumps. Further, α(2)-, but not α(1)-, pumps are confined to plasma membrane microdomains adjacent to sarcoplasmic reticulum (SR), where they colocalize with Na/Ca exchanger-1 (NCX1) and C-type transient receptor potential-6 (receptor-operated channels, ROCs). Prolonged inhibition (72 h) with 100 nM ouabain (blocks nearly all α(1)- and α(2)-pumps) was toxic to most cultured hASMCs. Treatment with 10 nM ouabain (72 h), however, increased NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and augmented ATP (10 µM)-induced SR Ca(2+) release in 0 Ca(2+), ouabain-free media, and Ca(2+) influx after external Ca(2+) restoration. The latter was likely mediated primarily by ROCs and store-operated Ca(2+) channels. These hASMC protein expression and Ca(2+) signaling changes are comparable with previous observations on myocytes isolated from arteries of many rat hypertension models. We conclude that the same structurally and functionally coupled mechanisms (α(2)-Na(+) pumps, NCX1, ROCs, and the SR) regulate Ca(2+) homeostasis and signaling in hASMCs and rodent ASMCs. These ouabain/endogenous ouabain-modulated mechanisms underlie the whole body autoregulation associated with increased vascular resistance and elevation of BP in human, salt-sensitive hypertension.


Subject(s)
Calcium Signaling/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Ouabain/pharmacology , Sodium Chloride/pharmacology , Sodium-Calcium Exchanger/drug effects , Vascular Resistance/drug effects , Adolescent , Adult , Aged , Animals , Blood Pressure/drug effects , Blotting, Western , Cardenolides/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Shape/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Female , Homeostasis , Humans , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/physiopathology , Immunohistochemistry , Inositol 1,4,5-Trisphosphate Receptors/drug effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Mammary Arteries/drug effects , Mammary Arteries/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Middle Aged , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Rats , Saponins/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium Chloride/toxicity , Sodium-Calcium Exchanger/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , TRPC Cation Channels/drug effects , TRPC Cation Channels/metabolism , Time Factors , Up-Regulation , Young Adult
7.
Am J Physiol Heart Circ Physiol ; 302(3): H611-20, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22140038

ABSTRACT

The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na(+) reabsorption. Recently we demonstrated that Ca(2+) signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na(+)/Ca(2+) exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca(2+) signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1-100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca(2+) signals in response to 5 µM PE or ATP in the absence and presence of extracellular Ca(2+). These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca(2+) release and increased Ca(2+) entry, respectively. The increased SR Ca(2+) release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca(2+) signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca(2+) signaling. These molecular and functional changes provide a mechanism for the increased peripheral vascular resistance (whole body autoregulation) that underlies the sustained hypertension.


Subject(s)
Calcium Signaling/physiology , Hypertension, Renal/metabolism , Mesenteric Artery, Superior/metabolism , Muscle, Smooth, Vascular/metabolism , Vasoconstriction/physiology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Calcium/metabolism , Calcium Signaling/drug effects , Enzyme Inhibitors/pharmacology , Hypertension, Renal/genetics , Hypertension, Renal/physiopathology , Mesenteric Artery, Superior/cytology , Mesenteric Artery, Superior/drug effects , Muscle, Smooth, Vascular/cytology , Ouabain/pharmacology , Rats , Rats, Mutant Strains , Sarcoplasmic Reticulum/metabolism , Sodium Chloride, Dietary/pharmacology , Spain , Vascular Resistance/drug effects , Vascular Resistance/physiology , Vasoconstriction/drug effects
8.
Am J Physiol Cell Physiol ; 300(6): C1502-12, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21368296

ABSTRACT

The relationship between altered metabolism of the amyloid-ß precursor protein (APP) and Alzheimer's disease is well established but the physiological roles of APP still remain unclear. Here, we studied Ca(2+) signaling in primary cultured and freshly dissociated cortical astrocytes from APP knockout (KO) mice and from Tg5469 mice overproducing by five- to sixfold wild-type APP. Resting cytosolic Ca(2+) (measured with fura-2) was not altered in cultured astrocytes from APP KO mice. The stored Ca(2+) evaluated by measuring peak amplitude of cyclopiazonic acid [CPA, endoplasmic reticulum (ER) Ca(2+) ATPase inhibitor]-induced Ca(2+) transients in Ca(2+)-free medium was significantly smaller in APP KO astrocytes than in wild-type cells. Store-operated Ca(2+) entry (SOCE) activated by ER Ca(2+) store depletion with CPA was also greatly reduced in APP KO astrocytes. This reflected a downregulated expression in APP KO astrocytes of TRPC1 (C-type transient receptor potential) and Orai1 proteins, essential components of store-operated channels (SOCs). Indeed, silencer RNA (siRNA) knockdown of Orai1 protein expression in wild-type astrocytes significantly attenuated SOCE. SOCE was also essentially reduced in freshly dissociated APP KO astrocytes. Importantly, knockdown of APP with siRNA in cultured wild-type astrocytes markedly attenuated ATP- and CPA-induced ER Ca(2+) release and extracellular Ca(2+) influx. The latter correlated with downregulation of TRPC1. Overproduction of APP in Tg5469 mice did not alter, however, the stored Ca(2+) level, SOCE, and expression of TRPC1/4/5 in cultured astrocytes from these mice. The data demonstrate that the functional role of APP in astrocytes involves the regulation of TRPC1/Orai1-encoded SOCs critical for Ca(2+) signaling.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Astrocytes/cytology , Astrocytes/physiology , Calcium Channels/genetics , Calcium Channels/metabolism , Cells, Cultured , Fluorescent Dyes/metabolism , Fura-2/metabolism , Homeostasis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , ORAI1 Protein , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Stromal Interaction Molecule 1 , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
9.
Am J Physiol Heart Circ Physiol ; 299(3): H624-33, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20622104

ABSTRACT

The Milan hypertensive strain (MHS) of rats is a model for hypertension in humans. Inherited defects in renal function have been well studied in MHS rats, but the mechanisms that underlie the elevated vascular resistance are unclear. Altered Ca(2+) signaling plays a key role in the vascular dysfunction associated with arterial hypertension. Here we compared Ca(2+) signaling in mesenteric artery smooth muscle cells from MHS rats and its normotensive counterpart (MNS). Systolic blood pressure was higher in MHS than in MNS rats (144 +/- 2 vs. 113 +/- 1 mmHg, P < 0.05). Resting cytosolic free Ca(2+) concentration (measured with fura-2) and ATP-induced Ca(2+) transients were augmented in freshly dissociated arterial myocytes from MHS rats. Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (a measure of receptor-operated channel activity) was much greater in MHS than MNS arterial myocytes. This correlated with a threefold upregulation of transient receptor potential canonical 6 (TRPC6) protein. TRPC3, the other component of receptor-operated channels, was marginally, but not significantly, upregulated. The expression of TRPC1/5, components of store-operated channels, was not altered in MHS mesenteric artery smooth muscle. Immunoblots also revealed that the Na(+)/Ca(2+) exchanger-1 (NCX1) was greatly upregulated in MHS mesenteric artery (by approximately 13-fold), whereas the expression of plasma membrane Ca(2+)-ATPase was not altered. Ca(2+) entry via the reverse mode of NCX1 evoked by the removal of extracellular Na(+) induced a rapid increase in cytosolic free Ca(2+) concentration that was significantly larger in MHS arterial myocytes. The expression of alpha(1)/alpha(2) Na(+) pumps in MHS mesenteric arteries was not changed. Immunocytochemical observations showed that NCX1 and TRPC6 are clustered in plasma membrane microdomains adjacent to the underlying sarcoplasmic reticulum. In summary, MHS arteries exhibit upregulated TRPC6 and NCX1 and augmented Ca(2+) signaling. We suggest that the increased Ca(2+) signaling contributes to the enhanced vasoconstriction and elevated blood pressure in MHS rats.


Subject(s)
Arteries/metabolism , Calcium/metabolism , Homeostasis/physiology , Hypertension/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Sodium-Calcium Exchanger/metabolism , TRPC Cation Channels/metabolism , Up-Regulation/physiology , Analysis of Variance , Animals , Blotting, Western , Cells, Cultured , Hypertension/genetics , Immunohistochemistry , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Rats , Sodium-Calcium Exchanger/genetics , TRPC Cation Channels/genetics
10.
Am J Physiol Cell Physiol ; 297(5): C1103-12, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19675303

ABSTRACT

Ca(2+) entry through store-operated channels (SOCs) in the plasma membrane plays an important role in regulation of vascular smooth muscle contraction, tone, and cell proliferation. The C-type transient receptor potential (TRPC) channels have been proposed as major candidates for SOCs in vascular smooth muscle. Recently, two families of transmembrane proteins, Orai [also known as Ca(2+) release-activated Ca(2+) channel modulator (CRACM)] and stromal interacting molecule 1 (STIM1), were shown to be essential for the activation of SOCs mainly in nonexcitable cells. Here, using small interfering RNA, we show that Orai1 plays an essential role in activating store-operated Ca(2+) entry (SOCE) in primary cultured proliferating human aortic smooth muscle cells (hASMCs), whereas Orai2 and Orai3 do not contribute to SOCE. Knockdown of Orai1 protein expression significantly attenuated SOCE. Moreover, inhibition of Orai1 downregulated expression of Na(+)/Ca(2+) exchanger type 1 (NCX1) and plasma membrane Ca(2+) pump isoform 1 (PMCA1). The rate of cytosolic free Ca(2+) concentration decay after Ca(2+) transients in Ca(2+)-free medium was also greatly decreased under these conditions. This reduction of Ca(2+) extrusion, presumably via NCX1 and PMCA1, may be a compensation for the reduced SOCE. Immunocytochemical observations indicate that Orai1 and NCX1 are clustered in plasma membrane microdomains. Cell proliferation was attenuated in hASMCs with disrupted Orai1 expression and reduced SOCE. Thus Orai1 appears to be a critical component of SOCE in proliferating vascular smooth muscle cells, and may therefore be a key player during vascular growth and remodeling.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Myocytes, Smooth Muscle/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism , Aorta/metabolism , Blotting, Western , Calcium Channels/genetics , Calcium Signaling/physiology , Cell Proliferation , Cells, Cultured , Down-Regulation , Fluorescent Antibody Technique , Gene Expression , Gene Expression Regulation , Humans , Immunohistochemistry , Muscle, Smooth, Vascular/metabolism , ORAI1 Protein , Plasma Membrane Calcium-Transporting ATPases/genetics , RNA, Small Interfering , Sodium-Calcium Exchanger/genetics
11.
Cell Calcium ; 43(6): 550-61, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18029012

ABSTRACT

A previous study has demonstrated that the ubiquitous plasma membrane Ca(2+) pump PMCA4 interacted with isoform epsilon of the 14-3-3 protein, whereas the nervous tissue-specific PMCA2 did not. The 14-3-3 proteins are widely expressed small acidic proteins, which modulate cell signaling, intracellular trafficking, transcription and apoptosis. The investigation has been extended to the other tissue-restricted pump (PMCA3) and to the other ubiquitous pump (PMCA1). At variance with PMCA2, PMCA3 interacted with the 14-3-3epsilon protein in a two-hybrid system assay, which could not be used for PMCA1. The 14-3-3epsilon protein immunoprecipitated with both PMCA3 and PMCA1 when expressed in HeLa cells. Pull-down experiments using GST-PMCA1 and GST-PMCA3 fusion products confirmed the interaction of both pumps with the 14-3-3epsilon protein. The binding was phosphorylation-independent with both PMCA3 and PMCA1. The 14-3-3zeta isoform also interacted with PMCA3; however, it did not interact with PMCA1. The effect of the interaction on the activity of the two pumps, and thus on the homeostasis of Ca(2+), was investigated by co-expressing the 14-3-3epsilon protein and PMCA3 or PMCA1 in CHO cells together with the recombinant Ca(2+) indicator aequorin: the ability of cells to re-establish the basal Ca(2+) concentration following a Ca(2+) transient induced by an InsP(3)-producing agonist was substantially decreased with both pumps, indicating that the interaction with the 14-3-3 protein inhibited the activity of both PMCA3 and PMCA1.


Subject(s)
14-3-3 Proteins/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Cell Membrane/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , 14-3-3 Proteins/drug effects , 14-3-3 Proteins/genetics , Aequorin , Amino Acid Motifs , Amino Acid Sequence , Animals , CHO Cells , Calcium Channel Agonists/pharmacology , Calcium Signaling/drug effects , Cell Membrane/drug effects , Cricetinae , Cricetulus , HeLa Cells , Homeostasis/drug effects , Homeostasis/genetics , Humans , Indicators and Reagents , Molecular Sequence Data , Phosphorylation , Plasma Membrane Calcium-Transporting ATPases/drug effects , Plasma Membrane Calcium-Transporting ATPases/genetics , Protein Isoforms/drug effects , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Fusion Proteins/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...