Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 6235, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737519

ABSTRACT

Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014-2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.

2.
Mar Environ Res ; 66(5): 487-98, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18845332

ABSTRACT

We deployed semipermeable membrane devices (SPMDs) on beaches for 28 days at 53 sites in Prince William Sound (PWS), Alaska, to evaluate the induction potential from suspected sources of cytochrome P450 1A (CYP1A)-inducing contaminants. Sites were selected to assess known point sources, or were chosen randomly to evaluate the region-wide sources. After deployment, SPMD extracts were analyzed chemically for persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAH). These results were compared with hepatic CYP1A enzyme activity of juvenile rainbow trout injected with the same extracts prior to clean-up for the chemical analyses. Increased CYP1A activity was strongly associated with PAH concentrations in extracts, especially chrysene homologues but was not associated with POPs. The only apparent sources of chrysene homologues were lingering oil from Exxon Valdez, asphalt and bunker fuels released from storage tanks during the 1964 Alaska earthquake, creosote leaching from numerous pilings at one site, and PAH-contaminated sediments at Cordova Harbor. Our results indicate that PWS is remarkably free of pollution from PAH when nearby sources are absent as well as from pesticides and PCBs generally.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Petroleum , Water Pollutants, Chemical/toxicity , Alaska , Animals , Biological Availability , Enzyme Induction/drug effects , Oncorhynchus mykiss/metabolism
3.
Mar Environ Res ; 66(5): 477-86, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18845333

ABSTRACT

Extracts from semi-permeable membrane devices (SPMDs) deployed on beaches in Prince William Sound (PWS), Alaska, were used to evaluate if complex contaminant mixtures from different sources can be distinguished by the resulting cytochrome P450 1A (CYP1A) activity in exposed test animals. Deployment sites included canneries, salmon hatcheries, and beaches where lingering oil remains from discharges during the 1964 earthquake or the 1989 Exxon Valdez oil spill. Other sites were selected at random to evaluate region-wide contaminant inputs or were located in salmon streams to evaluate contaminants carried and released by migrating salmon carcasses following reproduction. Following standard deployments of approximately 28 d, an aliquot of the accumulated contaminants was intraperitoneally injected without cleanup into juvenile rainbow trout (Oncorhynchus mykiss). After 2 d and 7 d, the activity of CYP1A was measured by the ethoxyresorufin-o-deethylase (EROD) assay. Exposure to extracts from the oiled sites and one hatchery site with numerous creosote pilings elicited strong EROD responses, whereas fish exposed to salmon stream extracts elicited weak but significant responses during late summer compared to late spring. Responses from the other sites were not significant, indicating contaminants from these sources are unlikely to cause CYP1A induction in resident biota. Rather than simply assessing extant contaminants, this method evaluates the potency of the different sites for bringing about aryl hydrocarbon receptor responses in resident biota.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Oncorhynchus mykiss/metabolism , Water Pollutants, Chemical/toxicity , Alaska , Animals , Aquaculture , Enzyme Induction/drug effects , Human Activities , Oceans and Seas , Rivers
4.
Environ Sci Technol ; 41(4): 1245-50, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17593726

ABSTRACT

Oil stranded by the 1989 Exxon Valdez spill has persisted in subsurface sediments of exposed shores for 16 years. With annualized loss rates declining from approximately 68% yr(-1) prior to 1992 to approximately 4% yr(-1) after 2001, weathering processes are retarded in both sediments and residual emulsified oil ("oil mousse"), and retention of toxic polycyclic aromatic hydrocarbons is prolonged. The n-alkanes, typically very readily oxidized by microbes, instead remain abundant in many stranded emulsified oil samplesfrom the Gulf of Alaska. They are less abundant in Prince William Sound samples, where stranded oil was less viscous. Our results indicate that, at some locations, remaining subsurface oil may persist for decades with little change.


Subject(s)
Alkanes/analysis , Environmental Pollutants/analysis , Petroleum , Polycyclic Aromatic Hydrocarbons/analysis , Accidents , Alaska , Alkanes/history , Environmental Monitoring , Environmental Pollutants/history , Geologic Sediments/analysis , History, 20th Century , History, 21st Century , Polycyclic Aromatic Hydrocarbons/history , Ships
5.
Environ Sci Technol ; 40(12): 3723-9, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16830533

ABSTRACT

We examined 32 shorelines selected at random in 2003 from shorelines in Herring Bay, Lower Pass, and Bay of Isles in Prince William Sound, Alaska, to examine the vertical distribution of oil remaining from the 1989 Exxon Valdez oil spill and to estimate the probability that sea otters and ducks would encounter oil while foraging there. On each shoreline, sampling was stratified by 1-m tide height intervals and randomly located 0.25 m2 sampling quadrats were examined for evidence of surface and subsurface oil. Oil from the T/V Exxon Valdezwasfound on 14 shorelines, mainly in Herring Bay and Lower Pass, with an estimated 0.43 ha covered by surface oil and 1.52 ha containing subsurface oil. Surface and subsurface oil were most prevalent near the middle of the intertidal and had nearly symmetrical distributions with respect to tide height. Hence, about half the oil is in the biologically rich lower intertidal, where predators may encounter it while disturbing sediments in search of prey. The overall probability of encountering surface or subsurface oil is estimated as 0.0048, which is only slightly greaterthan our estimated probability of encountering subsurface oil in the lower intertidal of Herring Bay or Lower Pass. These encounter probabilities are sufficient to ensure that sea otters and ducks that routinely excavate sediments while foraging within the intertidal would likely encounter subsurface oil repeatedly during the course of a year.


Subject(s)
Accidents , Geologic Sediments/chemistry , Petroleum , Water Movements , Water Pollutants, Chemical , Alaska , Animals , Animals, Wild/physiology , Ducks/physiology , Environmental Monitoring , Otters/physiology , Petroleum/analysis , Probability , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 38(1): 19-25, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14740712

ABSTRACT

We estimated the amount of oil remaining in Prince William Sound, Alaska, 12 yr after the 1989 Exxon Valdez spill to assess its importance as a long-term reservoir of toxic hydrocarbons. We found oil on 78 of 91 beaches randomly selected according to their oiling history. Surface oiling was recorded for randomly placed quadrats, which were then excavated and examined for subsurface oil. The cumulative area of beach contaminated by surface or subsurface oil was estimated at 11.3 ha. Surface oil varied little with tide height, but subsurface oil was more prevalent at the middle tide heights. The mass of remaining subsurface oil is conservatively estimated at 55 600 kg. Analysis of terpanes indicated that over 90% of the surface oil and all of the subsurface oil was from the Exxon Valdez and that Monterey Formation oil deposited after the 1964 Alaska earthquake accounted for the remaining surface oil. These results indicate that oil from the Exxon Valdez remains by far the largest reservoir of biologically available polycyclic aromatic hydrocarbons on beaches impacted by the spill and that biota dependent on these beaches risk continued exposure.


Subject(s)
Carcinogens , Petroleum , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Accidents , Alaska , Environmental Monitoring , Risk Assessment , Ships , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...