Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 52: 13-23, 2019 02.
Article in English | MEDLINE | ID: mdl-30468969

ABSTRACT

In Magnetic Resonance Imaging, mapping of the static magnetic field and the magnetic susceptibility is based on multidimensional phase measurements. Phase data are ambiguous and have to be unwrapped to their true range in order to exhibit a correct representation of underlying features. High-resolution imaging at ultra-high fields, where susceptibility and phase contrast are natural tools, can generate large datasets, which tend to dramatically increase computing time demands for spatial unwrapping algorithms. This article describes a novel method, URSULA, which introduces an artificial volume compartmentalisation that allows large-scale unwrapping problems to be broken down, making URSULA ideally suited for computational parallelisation. In the presented study, URSULA is illustrated with a quality-guided unwrapping approach. Validation is performed on numerical data and an application on a high-resolution measurement, at the clinical field strength of 3T is demonstrated. In conclusion, URSULA allows for a reduction of the problem size, a substantial speed-up and for handling large data sets without sacrificing the overall accuracy of the resulting phase information.


Subject(s)
Algorithms , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Computer Simulation , Humans , Imaging, Three-Dimensional
2.
AJNR Am J Neuroradiol ; 37(8): 1418-21, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27032975

ABSTRACT

BACKGROUND AND PURPOSE: Hyperattenuated cerebral areas on postinterventional CT are a common finding after endovascular stroke treatment. There is uncertainty about the extent to which these hyperattenuated areas correspond to hemorrhage or contrast agent that extravasated into infarcted parenchyma during angiography. We evaluated whether it is possible to distinguish contrast extravasation from blood on MR imaging. MATERIALS AND METHODS: We examined the influence of iodinated contrast agents on T1, T2, and T2* and magnetic susceptibility in a phantom model and an ex vivo animal model. We determined T1, T2, and T2* relaxation times and magnetic susceptibility of iopamidol and iopromide in dilutions of 1:1; 1:2; 1:4; 1:10; and 1:100 with physiologic saline solution. We then examined the appearance of intracerebral iopamidol on MR imaging in an ex vivo animal model. To this end, we injected iopamidol into the brain of a deceased swine. RESULTS: Iopamidol and iopromide cause a negative susceptibility shift and T1, T2, and T2* shortening. The effects, however, become very small in dilutions of 1:10 and higher. Undiluted iopamidol, injected directly into the brain parenchyma, did not cause visually distinctive signal changes on T1-weighted spin-echo, T2-weighted turbo spin-echo, and T2*-weighted gradient recalled-echo imaging. CONCLUSIONS: It is unlikely that iodinated contrast agents extravasated into infarcted brain parenchyma cause signal changes that mimic hemorrhage on T1WI, T2WI, and T2*WI. Our results imply that extravasated contrast agents can be distinguished from hemorrhage on MR imaging.


Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Contrast Media , Extravasation of Diagnostic and Therapeutic Materials/diagnostic imaging , Magnetic Resonance Imaging/methods , Animals , Humans , Iohexol/analogs & derivatives , Iopamidol , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...