Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol Paris ; 107(3): 210-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22982543

ABSTRACT

Like humans, oscine songbirds exhibit vocal learning. They learn their song by imitating conspecifics, mainly adults. Among them, the zebra finch (Taeniopygia guttata) has been widely used as a model species to study the behavioral, cellular and molecular substrates of vocal learning. Various methods using taped song playback have been used in the laboratory to train young male finches to learn a song. Since different protocols have been applied by different research groups, the efficiency of the studies cannot be directly compared. The purpose of our study was to address this problem. Young finches were raised by their mother alone from day post hatching (dph) 10 and singly isolated from dph 35. One week later, exposure to a song model began, either using a live tutor or taped playback (passive or self-elicited). At dph 100, the birds were transferred to a common aviary. We observed that one-to-one live tutoring is the best method to get a fairly complete imitation. Using self-elicited playback we observed high inter-individual variability; while some finches learned well (including good copying of the song model), others exhibited poor copying. Passive playback resulted in poor imitation of the model. We also observed that finches exhibited vocal changes after dph 100 and that the range of these changes was negatively related to their imitation of the song model. Taken together, these results suggest that social aspects are predominant in the success outcome of song learning in the zebra finch.


Subject(s)
Auditory Perception/physiology , Conditioning, Operant/physiology , Feedback, Physiological/physiology , Finches/physiology , Vocalization, Animal/physiology , Acoustic Stimulation/methods , Analysis of Variance , Animals , Finches/blood , Linear Models , Male , Radioimmunoassay , Sound Spectrography , Testosterone/blood , Time Factors
2.
BMC Biotechnol ; 9: 1, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-19128466

ABSTRACT

BACKGROUND: Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics. RESULTS: In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-gamma-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation. CONCLUSION: We here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.


Subject(s)
Bone Marrow Cells/cytology , Brain , Luciferases/genetics , Stromal Cells/transplantation , Transplantation Tolerance , Animals , Brain/metabolism , Cells, Cultured , Diagnostic Imaging , Genes, Reporter , Luciferases/metabolism , Luminescent Agents/metabolism , Luminescent Measurements , Male , Mice , Mice, Transgenic , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...