Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25834183

ABSTRACT

BACKGROUND: Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. METHODS AND RESULTS: Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. CONCLUSIONS: Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase.


Subject(s)
Femoral Artery/diagnostic imaging , Hindlimb/blood supply , Hindlimb/diagnostic imaging , Ischemia/diagnostic imaging , Ischemia/physiopathology , Microbubbles , Muscle, Skeletal/diagnostic imaging , Animals , Dilatation, Pathologic , Endothelium, Vascular/physiopathology , Femoral Artery/pathology , Male , Mice, Inbred C57BL , Myocardial Perfusion Imaging , Regional Blood Flow , Ultrasonography
2.
Am J Vet Res ; 68(9): 981-7, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17764413

ABSTRACT

OBJECTIVE: To evaluate anti-inflammatory effects of several novel adenosine receptor agonists and to determine their specificity for various adenosine receptor subtypes on neutrophils, cells heterologously expressing equine adenosine receptors, or equine brain membranes. SAMPLE POPULATION: Neutrophils isolated from 8 healthy horses. PROCEDURES: Radioligand binding experiments were performed to compare binding affinities of adenosine receptor agonists to equine adenosine A(1), A(2A), and A(3) receptor subtypes. Effects of these agonists on endotoxin-induced production of reactive oxygen species (ROS) by equine neutrophils and roles of specific adenosine receptor subtypes and cAMP production in mediating these effects were determined. RESULTS: Radioligand binding experiments yielded a ranked order of affinity for the brain equine A(2A) receptor on the basis of 50% inhibitory concentrations (IC(50)) of the agonists as follows: ATL307 (IC(50) = 1.9nM) and ATL313 > ATL309 and ATL310 > ATL202 > 2-([p-2- carboxyethyl] phenylethylamino)-5'-N-ethylcarboxyamidoadenosine > 5'-N-ethylcarboxamidoadenosine. Furthermore, ATL313 had approximately 100-fold greater selectivity for A(2A) over A(1) and A(3) receptors. In functional assays with equine neutrophils, the compounds inhibited endotoxin-induced ROS production and stimulated production of cAMP with the same ranked order of potency. Results of experiments performed with selective adenosine receptor antagonists indicated that functional effects of ATL313 were via stimulation of A(2A) receptors. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that activation of A(2A) receptors exerted anti-inflammatory effects on equine neutrophils and that stable, highly selective adenosine A(2A) receptor agonists may be developed for use in management of horses and other domestic animals with septic and nonseptic inflammatory diseases.


Subject(s)
Adenosine A2 Receptor Agonists , Horses/immunology , Neutrophils/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Animals , Binding, Competitive , Cyclic AMP/immunology , Inhibitory Concentration 50 , Kinetics , Lipopolysaccharides/immunology , Neutrophils/immunology , Phenethylamines/pharmacology , Piperidines/pharmacology , Radioligand Assay/veterinary , Reactive Oxygen Species/immunology , Receptor, Adenosine A2A/immunology , Receptor, Adenosine A2A/metabolism , Xanthines/pharmacology
3.
J Trauma ; 57(3): 547-54, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15454801

ABSTRACT

UNLABELLED: Hextend (HEX) is a colloid solution that is FDA-approved for volume expansion during surgery. ATL-146e is a novel adenosine A2A receptor agonist that has anti-inflammatory, neuroprotective, and coronary vasodilator properties. Three series of experiments were designed to evaluate the therapeutic potential of HEX+/-ATL-146e for emergency resuscitation from traumatic brain injury (TBI) + hemorrhagic hypotension. METHODS: In the first two studies in vivo, anesthetized, ventilated pigs (30-45 kg) received a fluid percussion TBI, 45% arterial hemorrhage, and 30 minutes shock period. In Series 1, resuscitation consisted of unlimited crystalloid (n = 8) or HEX (n = 8) to correct systolic arterial pressure >100 mm Hg and heart rate <100 bpm for the first 60 minutes ("emergency phase"), and then maintain cerebral perfusion pressure (CPP) > 70 mm Hg for 60-240 minutes. In Series 2 (n = 31), resuscitation consisted of a 1 L bolus of HEX + ATL-146e (10 ng/kg/min, n = 10) or HEX +placebo (n = 10) followed by crystalloid to the same endpoints. In Series 3 in vivo, the hemodynamic response evoked by 0, 10, 50, or 100 ng/kg/min ATL-146e was measured before or 60 minutes after HEX resuscitation from 45% hemorrhage. RESULTS: Following TBI+hemorrhage, there were 4/22 deaths in series 1 and 11/31 deaths in series 2. In those alive at 30 minutes, mean arterial pressure, cardiac index, mixed venous O2 saturation, and cerebral venous O2 saturation were all reduced by 40-60%, while heart rate and lactate were increased 2-5 fold. With no resuscitation (n = 2), there was minimal hemodynamic compensation and progressive acidosis. Upon resuscitation, these values corrected but intracranial pressure progressively rose from <5 mm Hg to 15-20 mm Hg. Series 1: With HEX (n = 8) versus crystalloid (n = 8), CPP was less labile, acid/base was maintained, and the fluid requirement was reduced by 60% (all p < 0.05) Series 2: With ATL-146e (n = 10) versus placebo (n = 10), stroke volume and cardiac output were improved by 40-60%, and the fluid requirement was reduced by 30% (all p < 0.05). Series 3: ATL-146e caused a dose-related increase (p < 0.05) in stroke volume after, but not before, hemorrhage. The effects on pre-load, afterload, and heart rate were similar before and after hemorrhage. CONCLUSIONS: HEX alone is a safe and efficacious low volume alternative to initial crystalloid resuscitation after TBI. An adenosine A2A agonist combined with 1 L of HEX safely and effectively counteracted a decrease in cardiac performance noted after TBI+hemorrhage without causing hypotension or bradycardia.


Subject(s)
Brain Injuries/therapy , Cyclohexanecarboxylic Acids/therapeutic use , Hydroxyethyl Starch Derivatives/therapeutic use , Plasma Substitutes/therapeutic use , Purines/therapeutic use , Resuscitation/methods , Animals , Blood Pressure/drug effects , Cardiac Output/drug effects , Female , Male , Shock, Hemorrhagic/therapy , Stroke Volume/drug effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...