Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 844, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149678

ABSTRACT

The combination of ultrahigh-throughput screening and sequencing informs on function and intragenic epistasis within combinatorial protein mutant libraries. Establishing a droplet-based, in vitro compartmentalised approach for robust expression and screening of protein kinase cascades (>107 variants/day) allowed us to dissect the intrinsic molecular features of the MKK-ERK signalling pathway, without interference from endogenous cellular components. In a six-residue combinatorial library of the MKK1 docking domain, we identified 29,563 sequence permutations that allow MKK1 to efficiently phosphorylate and activate its downstream target kinase ERK2. A flexibly placed hydrophobic sequence motif emerges which is defined by higher order epistatic interactions between six residues, suggesting synergy that enables high connectivity in the sequence landscape. Through positive epistasis, MKK1 maintains function during mutagenesis, establishing the importance of co-dependent residues in mammalian protein kinase-substrate interactions, and creating a scenario for the evolution of diverse human signalling networks.


Subject(s)
Epistasis, Genetic , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphates/metabolism , Catalysis , Humans , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 1/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Docking Simulation , Phosphorylation , Protein Domains , Protein Kinases/chemistry , Protein Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Substrate Specificity
2.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34772801

ABSTRACT

Exchanges of protein sequence modules support leaps in function unavailable through point mutations during evolution. Here we study the role of the two RAD51-interacting modules within the eight binding BRC repeats of BRCA2. We created 64 chimeric repeats by shuffling these modules and measured their binding to RAD51. We found that certain shuffled module combinations were stronger binders than any of the module combinations in the natural repeats. Surprisingly, the contribution from the two modules was poorly correlated with affinities of natural repeats, with a weak BRC8 repeat containing the most effective N-terminal module. The binding of the strongest chimera, BRC8-2, to RAD51 was improved by -2.4 kCal/mol compared to the strongest natural repeat, BRC4. A crystal structure of RAD51:BRC8-2 complex shows an improved interface fit and an extended ß-hairpin in this repeat. BRC8-2 was shown to function in human cells, preventing the formation of nuclear RAD51 foci after ionizing radiation.


Subject(s)
Protein Binding/physiology , Rad51 Recombinase/metabolism , Amino Acid Sequence , BRCA2 Protein/metabolism , Cell Line, Tumor , Humans
3.
Biochemistry ; 53(40): 6370-81, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25216081

ABSTRACT

The introduction of weak, hydrophobic interactions between fluorescent protein domains (FPs) can substantially increase the dynamic range (DR) of Förster resonance energy transfer (FRET)-based sensor systems. Here we report a comprehensive thermodynamic characterization of the stability of a range of self-associating FRET pairs. A new method is introduced that allows direct quantification of the stability of weak FP interactions by monitoring intramolecular complex formation as a function of urea concentration. The commonly used S208F mutation stabilized intramolecular FP complex formation by 2.0 kCal/mol when studied in an enhanced cyan FP (ECFP)-linker-enhanced yellow FP (EYFP) fusion protein, whereas a significantly weaker interaction was observed for the homologous Cerulean/Citrine FRET pair (ΔG0(o-c) = 0.62 kCal/mol). The latter effect could be attributed to two mutations in Cerulean (Y145A and H148D) that destabilize complex formation with Citrine. Systematic analysis of the contribution of residues 125 and 127 at the dimerization interface in mOrange.linker.mCherry fusion proteins yielded a toolbox of new mOrange-mCherry combinations that allowed tuning of their intramolecular interaction from very weak (ΔG0(o-c) = .0.39 kCal/mol) to relatively stable (ΔG0(o-c) = 2.2 kCal/mol). The effects of these mutations were also studied by monitoring homodimerization of mCherry variants using fluorescence anisotropy. These mutations affected intramolecular and intermolecular domain interactions similarly, although FP interactions were found to be stronger in the latter. The knowledge thus obtained allowed successful construction of a red-shifted variant of the bile acid FRET sensor BAS-1 by replacement of the self-associating Cerulean-Citrine pair by mOrange.mCherry variants with a similar intramolecular affinity. Our findings thus allow a better understanding of the subtle but important role of intramolecular domain interactions in current FRET sensors and help guide the construction of new sensors using modular design strategies.


Subject(s)
Biosensing Techniques , Amino Acid Substitution , Bile Acids and Salts/chemistry , Fluorescence Polarization , Fluorescence Resonance Energy Transfer , Hydrophobic and Hydrophilic Interactions , Luminescent Proteins/chemistry , Protein Binding , Protein Denaturation , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Stability , Thermodynamics , Urea/chemistry , Red Fluorescent Protein
4.
PLoS One ; 8(12): e82009, 2013.
Article in English | MEDLINE | ID: mdl-24312622

ABSTRACT

Magnesium has important structural, catalytic and signaling roles in cells, yet few tools exist to image this metal ion in real time and at subcellular resolution. Here we report the first genetically encoded sensor for Mg(2+), MagFRET-1. This sensor is based on the high-affinity Mg(2+) binding domain of human centrin 3 (HsCen3), which undergoes a transition from a molten-globular apo form to a compactly-folded Mg(2+)-bound state. Fusion of Cerulean and Citrine fluorescent domains to the ends of HsCen3, yielded MagFRET-1, which combines a physiologically relevant Mg(2+) affinity (K d = 148 µM) with a 50% increase in emission ratio upon Mg(2+) binding due to a change in FRET efficiency between Cerulean and Citrine. Mutations in the metal binding sites yielded MagFRET variants whose Mg(2+) affinities were attenuated 2- to 100-fold relative to MagFRET-1, thus covering a broad range of Mg(2+) concentrations. In situ experiments in HEK293 cells showed that MagFRET-1 can be targeted to the cytosol and the nucleus. Clear responses to changes in extracellular Mg(2+) concentration were observed for MagFRET-1-expressing HEK293 cells when they were permeabilized with digitonin, whereas similar changes were not observed for intact cells. Although MagFRET-1 is also sensitive to Ca(2+), this affinity is sufficiently attenuated (K d of 10 µM) to make the sensor insensitive to known Ca(2+) stimuli in HEK293 cells. While the potential and limitations of the MagFRET sensors for intracellular Mg(2+) imaging need to be further established, we expect that these genetically encoded and ratiometric fluorescent Mg(2+) sensors could prove very useful in understanding intracellular Mg(2+) homeostasis and signaling.


Subject(s)
Biosensing Techniques/methods , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Fluorescence Resonance Energy Transfer , Magnesium/metabolism , Calcium-Binding Proteins/chemistry , HEK293 Cells , Humans , Magnesium/pharmacology , Models, Molecular , Mutagenesis , Protein Folding/drug effects , Protein Structure, Tertiary , Spectrometry, Fluorescence
5.
Biochem Soc Trans ; 41(5): 1201-5, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24059509

ABSTRACT

Proteins that switch between distinct conformational states are ideal to monitor and control molecular processes within the complexity of biological systems. Inspired by the modular architecture of natural signalling proteins, our group explores generic design strategies for the construction of FRET-based sensor proteins and other protein switches. In the present article, I show that designing FRET sensors based on mutually exclusive domain interactions provides a robust method to engineer sensors with predictable properties and an inherently large change in emission ratio. The modularity of this approach should make it easily transferable to other applications of protein switches in fields ranging from synthetic biology, optogenetics and molecular diagnostics.


Subject(s)
Biosensing Techniques , Protein Engineering , Protein Interaction Domains and Motifs/genetics , Proteins/genetics , Fluorescence Resonance Energy Transfer , Proteins/chemistry , Synthetic Biology
6.
ACS Chem Biol ; 8(10): 2133-9, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-23962156

ABSTRACT

Elucidation of subcellular signaling networks by multiparameter imaging is hindered by a lack of sensitive FRET pairs spectrally compatible with the classic CFP/YFP pair. Here, we present a generic strategy to enhance the traditionally poor sensitivity of red FRET sensors by developing self-associating variants of mOrange and mCherry that allow sensors to switch between well-defined on- and off states. Requiring just a single mutation of the mFruit domain, this new FRET pair improved the dynamic range of protease sensors up to 10-fold and was essential to generate functional red variants of CFP-YFP-based Zn(2+) sensors. The large dynamic range afforded by the new red FRET pair allowed simultaneous use of differently colored Zn(2+) FRET sensors to image Zn(2+) over a broad concentration range in the same cellular compartment.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Small Molecule Libraries , Zinc/chemistry , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...