Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 152(1): 201, 2022 07.
Article in English | MEDLINE | ID: mdl-35931534

ABSTRACT

A characteristic feature of the eastern Bering Sea (EBS) is a subsurface layer linked to seasonal sea ice (SSI) and defined by bottom temperatures less than 2 °C, which is termed the cold pool. Cold pool variability is directly tied to regional zooplankton and fish dynamics. Multifrequency (200 and 460 kHz) acoustic backscatter data were collected remotely using upward looking echosounders along the EBS shelf from 2008 and 2018 and used as a proxy of biological abundance. Acoustic data were coupled with bottom temperature and regional SSI data from the cold (2006-2013) and warm (2014-2018) regimes to assess the relationship between biological scattering communities and cold pool variation. Acoustic backscatter was 2 orders of magnitude greater during the cold regime than during the warm regime, with multifrequency analysis indicating a shift in the warm regime frequency-dependent scattering communities. Cold pool proxy SSI was a stronger predictor for biological scattering than bottom temperature in the cold regime, while warm regime bottom temperature and SSI were equal in predictive power and resulted in improved predictive model performance. Results suggest coupled cold pool and frequency-dependent scattering dynamics are a potential regime shift indicator and may be useful for management practices in surrounding Arctic ecosystems.


Subject(s)
Ecosystem , Zooplankton , Animals , Arctic Regions , Fishes , Temperature
2.
J Acoust Soc Am ; 147(6): 3849, 2020 06.
Article in English | MEDLINE | ID: mdl-32611139

ABSTRACT

The impact of multibeam echosounder (MBES) operations on marine mammals has been less studied compared to military sonars. To contribute to the growing body of MBES knowledge, echolocation clicks of foraging Cuvier's beaked whales were detected on the Southern California Antisubmarine Warfare Range (SOAR) hydrophones during two MBES surveys and assembled into foraging events called group vocal periods (GVPs). Four GVP characteristics were analyzed Before, During, and After 12 kHz MBES surveys at the SOAR in 2017 and 2019 to assess differences in foraging behavior with respect to the mapping activity. The number of GVP per hour increased During and After MBES surveys compared with Before. There were no other differences between non-MBES and MBES periods for the three other characteristics: the number of clicks per GVP, GVP duration, and click rate. These results indicate that there was not a consistent change in foraging behavior during the MBES surveys that would suggest a clear response. The animals did not leave the range nor stop foraging during MBES activity. These results are in stark contrast to those of analogous studies assessing the effect of Naval mid-frequency active sonar on beaked whale foraging, where beaked whales stopped echolocating and left the area.


Subject(s)
Echolocation , Whales , Acoustics , Animals , California , Sound
3.
Neurotox Res ; 33(1): 199-212, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28470570

ABSTRACT

Reoccurring seasonal cyanobacterial harmful algal blooms (CHABs) persist in many waters, and recent work has shown links between CHAB and elevated risk of amyotrophic lateral sclerosis (ALS). Quantifying the exposure levels of CHAB as a potential risk factor for ALS is complicated by human mobility, potential pathways, and data availability. In this work, we develop phycocyanin concentration (i.e., CHAB exposure) maps using satellite remote sensing across northern New England to assess relationships with ALS cases using a spatial epidemiological approach. Strategic semi-analytical regression models integrated Landsat and in situ observations to map phycocyanin concentration (PC) for all lakes greater than 8 ha (n = 4117) across the region. Then, systematic versions of a Bayesian Poisson Log-linear model were fit to assess the mapped PC as a risk factor for ALS while accounting for model uncertainty and modifiable area unit problems. The satellite remote sensing of PC had strong overall ability to map conditions (adj. R2, 0.86; RMSE, 11.92) and spatial variability across the region. PC tended to be positively associated with ALS risk with the level of significance depending on fixed model components. Meta-analysis shows that when average PC exposure is 100 µg/L, an all model average odds ratio is 1.48, meaning there is about a 48% increase in average ALS risk. This research generated the first regionally comprehensive map of PC for thousands of lakes and integrated robust spatial uncertainty. The outcomes support the hypothesis that cyanotoxins increase the risk of ALS, which helps our understanding of the etiology of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/etiology , Cyanobacteria/chemistry , Harmful Algal Bloom , Phycocyanin/toxicity , Amyotrophic Lateral Sclerosis/epidemiology , Animals , Ecosystem , Environmental Monitoring , Humans , Lakes , Models, Statistical , New England/epidemiology , Phycocyanin/chemistry , Retrospective Studies , Risk Factors , Satellite Communications
5.
Ecology ; 89(2): 439-51, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18409433

ABSTRACT

Geographic variability in abundance can be driven by multiple physical and biological factors operating at multiple scales. To understand the determinants of larval trematode prevalence within populations of the marine snail host Littorina littorea, we quantified many physical and biological variables at 28 New England intertidal sites. A hierarchical, mixed-effects model identified the abundance of gulls (the final hosts and dispersive agents of infective trematode stages) and snail size (a proxy for time of exposure) as the primary factors associated with trematode prevalence. The predominant influence of these variables coupled with routinely low infection rates (21 of the 28 populations exhibited prevalence <12%) suggest broad-scale recruitment limitation of trematodes. Although infection rates were spatially variable, formal analyses detected no regional spatial gradients in either trematode prevalence or independent environmental variables. Trematode prevalence appears to be predominantly determined by local site characteristics favoring high gull abundance.


Subject(s)
Geography , Host-Parasite Interactions , Snails/parasitology , Trematoda/growth & development , Animals , Bayes Theorem , Biodiversity , Larva/growth & development , Markov Chains , Monte Carlo Method , Oceans and Seas , Population Density , Population Dynamics , Prevalence , Species Specificity
6.
Ground Water ; 44(4): 528-39, 2006.
Article in English | MEDLINE | ID: mdl-16857030

ABSTRACT

The strong influence of subsurface heterogeneity on contaminant migration and in situ remediation calls for an improved understanding of its origins and more efficient methods of characterization. Accordingly, an outcrop study of physical and chemical heterogeneity was conducted in a glaciofluvial deposit in Deerfield, New Hampshire, in order to uncover processes controlling the spatial variation of sediment properties and evaluate the extent to which geologic information can be used to characterize the observed variation. The results indicate that physical and chemical properties at the Deerfield site have distinctly different spatial correlation structures. Lithologic facies explain 31% to 60% of the variation in permeability, dithionite citrate (DC)-extractable manganese, and DC-extractable aluminum. Lithofacies bounding surfaces do not separate regions of significantly different DC-extractable iron; instead, 49% of its variation is explained by sediment color. Color also accounts for 34% of the variation in DC-extractable aluminum and 60% of the variation in DC-extractable manganese. Strong relationships with sediment facies and/or color enable detailed mapping of permeability, extractable iron, and extractable manganese. Differences in the geometries of iron and manganese enrichment, petrographic observations, and scanning electron microscope analyses indicate that (hydr)oxide grain coatings originated from the postdepositional weathering of biotite and garnet, coupled with local, redox-driven redistribution of the liberated iron and manganese. The findings suggest that lithofacies and color information can aid the characterization and modeling of heterogeneity at similar carbon-poor glaciofluvial sites.


Subject(s)
Water Movements , Aluminum/chemistry , Color , Geologic Sediments , Iron/chemistry , Minerals/chemistry , New Hampshire , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...