Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(22): 226002, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877944

ABSTRACT

When a spin-splitting field is introduced to a thin film superconductor, the spin currents polarized along the field couples to energy currents that can only decay via inelastic scattering. We study spin and energy injection into such a superconductor where spin-orbit impurity scattering yields inverse spin-Hall and spin-swapping currents. We show that the combined presence of a spin-splitting field, superconductivity, and inelastic scattering gives rise to a strong enhancement of the ordinary inverse spin-Hall effect, as well as unique inverse spin-Hall and spin-swapping signals orders of magnitude stronger than the ordinary inverse spin-Hall signal. These can be completely controlled by the orientation of the spin-splitting field, resulting in a long-range charge and spin accumulations detectable much further from the injector than in the normal state. While the enhanced inverse spin-Hall signals offer a major improvement in spin detection sensitivity, the unique spin-swap signals can be utilized for designing devices where both the spin and current directions are controlled and altered throughout the geometry.

2.
Phys Rev Lett ; 131(7): 076001, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656842

ABSTRACT

Antiferromagnets have no net spin splitting on the scale of the superconducting coherence length. Despite this, antiferromagnets have been observed to suppress superconductivity in a similar way as ferromagnets, a phenomenon that still lacks a clear understanding. We find that this effect can be explained by the role of impurities in antiferromagnets. Using quasiclassical Green's functions, we study the proximity effect and critical temperature in diffusive superconductor-metallic antiferromagnet bilayers. The nonmagnetic impurities acquire an effective magnetic component in the antiferromagnet. This not only reduces the critical temperature but also separates the superconducting correlations into short-ranged and long-ranged components, similar to ferromagnetic proximity systems.

3.
Phys Rev Lett ; 131(7): 076003, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656846

ABSTRACT

The ability of magnetic materials to modify superconductors is an active research area for possible applications in thermoelectricity, quantum sensing, and spintronics. We consider the fundamental properties of the Josephson effect in a class of magnetic materials that recently have attracted much attention: altermagnets. We show that despite having no net magnetization and a band structure qualitatively different from ferromagnets and from conventional antiferromagnets without spin-split bands, altermagnets induce 0-π oscillations. The decay length and oscillation period of the Josephson coupling are qualitatively different from ferromagnetic junctions and depend on the crystallographic orientation of the altermagnet. The Josephson effect in altermagnets thus serves a dual purpose: it acts as a signature that distinguishes altermagnetism from ferromagnetism and conventional antiferromagnetism and offers a way to control the supercurrent via flow direction anisotropy.

4.
Phys Rev Lett ; 130(23): 237001, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37354396

ABSTRACT

Superconductor-ferromagnet tunnel junctions demonstrate giant thermoelectric effects that are being exploited to engineer ultrasensitive terahertz radiation detectors. Here, we experimentally observe the recently predicted complete magnetic control over thermoelectric effects in a superconducting spin valve, including the dependence of its sign on the magnetic state of the spin valve. The description of the experimental results is improved by the introduction of an interfacial domain wall in the spin filter layer interfacing the superconductor. Surprisingly, the application of high in-plane magnetic fields induces a double sign inversion of the thermoelectric effect, which exhibits large values even at applied fields twice the superconducting critical field.


Subject(s)
Magnetic Fields , Terahertz Radiation
5.
Sci Adv ; 9(9): eadf5500, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36857452

ABSTRACT

BCS theory has been widely successful at describing elemental bulk superconductors. Yet, as the length scales of such superconductors approach the atomic limit, dimensionality as well as the environment of the superconductor can lead to drastically different and unpredictable superconducting behavior. Here, we report a threefold enhancement of the superconducting critical temperature and gap size in ultrathin epitaxial Al films on Si(111), when approaching the 2D limit, based on high-resolution scanning tunneling microscopy/spectroscopy (STM/STS) measurements. Using spatially resolved spectroscopy, we characterize the vortex structure in the presence of a strong Zeeman field and find evidence of a paramagnetic Meissner effect originating from odd-frequency pairing contributions. These results illustrate two notable influences of reduced dimensionality on a BCS superconductor and present a platform to study BCS superconductivity in large magnetic fields.

6.
Phys Rev Lett ; 127(20): 207001, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860055

ABSTRACT

At the interface between a ferromagnetic insulator and a superconductor there is a coupling between the spins of the two materials. We show that when a supercurrent carried by triplet Cooper pairs flows through the superconductor, the coupling induces a magnon spin current in the adjacent ferromagnetic insulator. The effect is dominated by Cooper pairs polarized in the same direction as the ferromagnetic insulator, so that charge and spin supercurrents produce similar results. Our findings demonstrate a way of converting Cooper pair supercurrents to magnon spin currents.

7.
Sci Rep ; 11(1): 19041, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34561472

ABSTRACT

Controlling the perpendicular magnetic anisotropy (PMA) in thin films has received considerable attention in recent years due to its technological importance. PMA based devices usually involve heavy-metal (oxide)/ferromagnetic-metal bilayers, where, thanks to interfacial spin-orbit coupling (SOC), the in-plane (IP) stability of the magnetisation is broken. Here we show that in V/MgO/Fe(001) epitaxial junctions with competing in-plane and out-of-plane (OOP) magnetic anisotropies, the SOC mediated interaction between a ferromagnet (FM) and a superconductor (SC) enhances the effective PMA below the superconducting transition. This produces a partial magnetisation reorientation without any applied field for all but the largest junctions, where the IP anisotropy is more robust; for the smallest junctions there is a reduction of the field required to induce a complete OOP transition ([Formula: see text]) due to the stronger competition between the IP and OOP anisotropies. Our results suggest that the degree of effective PMA could be controlled by the junction lateral size in the presence of superconductivity and an applied electric field. We also discuss how the [Formula: see text] field could be affected by the interaction between magnetic stray fields and superconducting vortices. Our experimental findings, supported by numerical modelling of the ferromagnet-superconductor interaction, open pathways to active control of magnetic anisotropy in the emerging dissipation-free superconducting spin electronics.

8.
Sci Rep ; 11(1): 5028, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658536

ABSTRACT

We theoretically determine the magnetic exchange interaction between two ferromagnets coupled by a superconductor using a tight-binding lattice model. The main purpose of this study is to determine how the self-consistently determined superconducting state influences the exchange interaction and the preferred ground-state of the system, including the role of impurity scattering. We find that the superconducting state eliminates RKKY-like oscillations for a sufficiently large superconducting gap, making the anti-parallel orientation the ground state of the system. Interestingly, the superconducting gap is larger in the parallel configuration than in the anti-parallel configuration, giving a larger superconducting condensation energy, even when the preferred ground state is anti-parallel. We also show that increasing the impurity concentration in the superconductor causes the exchange interaction to decrease, likely due to an increasing localization of the mediating quasiparticles in the superconductor.

9.
Phys Rev Lett ; 127(26): 267001, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029472

ABSTRACT

Unconventional superconductors are of high interest due to their rich physics, a topical example being topological edge states associated with p-wave superconductivity. A practical obstacle in studying such systems is the very low critical temperature T_{c} that is required to realize a p-wave superconducting phase in a material. We predict that the T_{c} of an intrinsic p-wave superconductor can be significantly enhanced by coupling to a conventional s-wave or d-wave superconductor with a higher critical temperature via an atomically thin ferromagnetic (F) layer. We show that this T_{c} boost is tunable via the direction of the magnetization in F. Moreover, we show that the enhancement in T_{c} can also be achieved using the Zeeman effect of an external magnetic field. Our findings provide a way to increase T_{c} in p-wave superconductors in a controllable way and make the exotic physics associated with such materials more easily accessible experimentally.

10.
Phys Rev Lett ; 125(10): 107002, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32955310

ABSTRACT

We consider a hybrid structure where a material with Rashba-like spin-orbit coupling is proximity coupled to a conventional superconductor. We find that the superconducting critical temperature T_{c} can be tuned by rotating the vector n characterizing the axis of broken inversion symmetry. This is explained by a leakage of s-wave singlet Cooper pairs out of the superconducting region, and by conversion of s-wave singlets into other types of correlations, among these s-wave odd-frequency pairs robust to impurity scattering. These results demonstrate a conceptually different way of tuning T_{c} compared to the previously studied variation of T_{c} in magnetic hybrids.

11.
Phys Rev Lett ; 124(4): 047001, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058732

ABSTRACT

Conventional superconductors respond to external magnetic fields by generating diamagnetic screening currents. However, theoretical work has shown that one can engineer systems where the screening current is paramagnetic, causing them to attract magnetic flux-a prediction that has recently been experimentally verified. In contrast to previous studies, we show that this effect can be realized in simple superconductor-normal-metal structures with no special properties, using only a simple voltage bias to drive the system out of equilibrium. This is of fundamental interest, since it opens up a new avenue of research, and at the same time highlights how one can realize paramagnetic Meissner effects without having odd-frequency states at the Fermi level. Moreover, a voltage-tunable electromagnetic response in such a simple system may be interesting for future device design.

12.
Sci Rep ; 9(1): 12731, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31519921

ABSTRACT

We propose a mechanism whereby spin supercurrents can be manipulated in superconductor/ferromagnet proximity systems via nonequilibrium spin injection. We find that if a spin supercurrent exists in equilibrium, a nonequilibrium spin accumulation will exert a torque on the spins transported by this current. This interaction causes a new spin supercurrent contribution to manifest out of equilibrium, which is proportional to and polarized perpendicularly to both the injected spins and the equilibrium spin current. This is interesting for several reasons: as a fundamental physical effect; due to possible applications as a way to control spin supercurrents; and timeliness in light of recent experiments on spin injection in proximitized superconductors.

13.
Phys Rev Lett ; 122(21): 217203, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31283310

ABSTRACT

The recent discovery of magnetism in two-dimensional van der Waals systems opens the door to discovering exciting physics. We investigate how a current can control the ferromagnetic properties of such materials. Using symmetry arguments, we identify a recently realized system in which the current-induced spin torque is particularly simple and powerful. In Fe_{3}GeTe_{2}, a single parameter determines the strength of the spin-orbit torque for a uniform magnetization. The spin-orbit torque acts as an effective out-of-equilibrium free energy. The contribution of the spin-orbit torque to the effective free energy introduces new in-plane magnetic anisotropies to the system. Therefore, we can tune the system from an easy-axis ferromagnet via an easy-plane ferromagnet to another easy-axis ferromagnet with increasing current density. This finding enables unprecedented control and provides the possibility to study the Berezinskiǐ-Kosterlitz-Thouless phase transition in the 2D XY model and its associated critical exponents.

14.
Phys Rev Lett ; 120(20): 207001, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864306

ABSTRACT

Giant vortices with higher phase winding than 2π are usually energetically unfavorable, but geometric symmetry constraints on a superconductor in a magnetic field are known to stabilize such objects. Here, we show via microscopic calculations that giant vortices can appear in intrinsically nonsuperconducting materials, even without any applied magnetic field. The enabling mechanism is the proximity effect to a host superconductor where a current flows, and we also demonstrate that antivortices can appear in this setup. Our results open the possibility to study electrically controllable topological defects in unusual environments, which do not have to be exposed to magnetic fields or intrinsically superconducting, but instead display other types of order.

15.
Nat Commun ; 9(1): 474, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382837

ABSTRACT

The original version of this Article contained an error in Fig. 6b. In the top scattering process, while the positioning of both arrows was correct, the colours were switched: the first arrow was red and the second arrow was blue, rather than the correct order of blue then red.

16.
Nat Commun ; 9(1): 137, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29305576

ABSTRACT

The original version of this Article omitted the following from the Acknowledgements:"This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 262633, QuSpin."This has now been corrected in both the PDF and HTML versions of the article.

17.
Nat Commun ; 8(1): 2056, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29233987

ABSTRACT

Spin-triplet Cooper pairs induced in ferromagnets form the centrepiece of the emerging field of superconducting spintronics. Usually the focus is on the spin-polarization of the triplets, potentially enabling low-dissipation magnetization switching. However, the magnetic texture which provides the fundamental mechanism for generating triplets also permits control over the spatial distribution of supercurrent. Here we demonstrate the tailoring of distinct supercurrent pathways in the ferromagnetic barrier of a Josephson junction. We combine micromagnetic simulations with three-dimensional supercurrent calculations to design a disk-shaped structure with a ferromagnetic vortex which induces two transport channels across the junction. By using superconducting quantum interferometry, we show the existence of two channels. Moreover, we show how the supercurrent can be controlled by moving the vortex with a magnetic field. This approach paves the way for supercurrent paths to be dynamically reconfigured in order to switch between different functionalities in the same device.

18.
Nat Commun ; 8(1): 2019, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222507

ABSTRACT

Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral p x + ip y wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi2Te3 topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral p x + ip y component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and π coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi2Te3 flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.

19.
Sci Rep ; 7(1): 1932, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28512309

ABSTRACT

Interfacing superconductors with strongly spin-polarized magnetic materials opens the possibility to discover new spintronic devices in which spin-triplet Cooper pairs play a key role. Motivated by the recent derivation of spin-polarized quasiclassical boundary conditions capable of describing such a scenario in the diffusive limit, we consider the emergent physics in hybrid structures comprised of a conventional s-wave superconductor (e.g. Nb, Al) and either strongly spin-polarized ferromagnetic insulators (e.g. EuO, GdN) or halfmetallic ferromagnets (e.g. CrO2, LCMO). In contrast to most previous works, we focus on how the superconductor itself is influenced by the proximity effect, and how the generated triplet Cooper pairs manifest themselves in the self-consistently computed density of states (DOS) and the superconducting critical temperature T c . We provide a comprehensive treatment of how the superconductor and its properties are affected by the triplet pairs, demonstrating that our theory can reproduce the recent observation of an unusually large zero-energy peak in a superconductor interfaced with a half-metal, which even exceeds the normal-state DOS. We also discuss the recent observation of a large superconducting spin-valve effect with a T c change ~1 K in superconductor/half-metal structures, in which case our results indicate that the experiment cannot be explained fully by a long-ranged triplet proximity effect.

20.
Sci Rep ; 7: 41409, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28139667

ABSTRACT

We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated.

SELECTION OF CITATIONS
SEARCH DETAIL
...