Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Am J Hum Genet ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38688278

ABSTRACT

The differential performance of polygenic risk scores (PRSs) by group is one of the major ethical barriers to their clinical use. It is also one of the main practical challenges for any implementation effort. The social repercussions of how people are grouped in PRS research must be considered in communications with research participants, including return of results. Here, we outline the decisions faced and choices made by a large multi-site clinical implementation study returning PRSs to diverse participants in handling this issue of differential performance. Our approach to managing the complexities associated with the differential performance of PRSs serves as a case study that can help future implementers of PRSs to plot an anticipatory course in response to this issue.

2.
Nat Med ; 30(2): 480-487, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38374346

ABSTRACT

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Subject(s)
Chronic Disease , Genetic Risk Score , Population Health , Adult , Child , Humans , Communication , Genetic Predisposition to Disease , Genome-Wide Association Study , Risk Factors , United States
3.
Am J Hum Genet ; 110(11): 1950-1958, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37883979

ABSTRACT

As large-scale genomic screening becomes increasingly prevalent, understanding the influence of actionable results on healthcare utilization is key to estimating the potential long-term clinical impact. The eMERGE network sequenced individuals for actionable genes in multiple genetic conditions and returned results to individuals, providers, and the electronic health record. Differences in recommended health services (laboratory, imaging, and procedural testing) delivered within 12 months of return were compared among individuals with pathogenic or likely pathogenic (P/LP) findings to matched individuals with negative findings before and after return of results. Of 16,218 adults, 477 unselected individuals were found to have a monogenic risk for arrhythmia (n = 95), breast cancer (n = 96), cardiomyopathy (n = 95), colorectal cancer (n = 105), or familial hypercholesterolemia (n = 86). Individuals with P/LP results more frequently received services after return (43.8%) compared to before return (25.6%) of results and compared to individuals with negative findings (24.9%; p < 0.0001). The annual cost of qualifying healthcare services increased from an average of $162 before return to $343 after return of results among the P/LP group (p < 0.0001); differences in the negative group were non-significant. The mean difference-in-differences was $149 (p < 0.0001), which describes the increased cost within the P/LP group corrected for cost changes in the negative group. When stratified by individual conditions, significant cost differences were observed for arrhythmia, breast cancer, and cardiomyopathy. In conclusion, less than half of individuals received billed health services after monogenic return, which modestly increased healthcare costs for payors in the year following return.


Subject(s)
Breast Neoplasms , Cardiomyopathies , Adult , Humans , Female , Prospective Studies , Patient Acceptance of Health Care , Arrhythmias, Cardiac , Breast Neoplasms/genetics , Cardiomyopathies/genetics
4.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333246

ABSTRACT

Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.

5.
Genet Med ; 25(9): 100906, 2023 09.
Article in English | MEDLINE | ID: mdl-37246632

ABSTRACT

Polygenic risk scores (PRS) have potential to improve health care by identifying individuals that have elevated risk for common complex conditions. Use of PRS in clinical practice, however, requires careful assessment of the needs and capabilities of patients, providers, and health care systems. The electronic Medical Records and Genomics (eMERGE) network is conducting a collaborative study which will return PRS to 25,000 pediatric and adult participants. All participants will receive a risk report, potentially classifying them as high risk (∼2-10% per condition) for 1 or more of 10 conditions based on PRS. The study population is enriched by participants from racial and ethnic minority populations, underserved populations, and populations who experience poorer medical outcomes. All 10 eMERGE clinical sites conducted focus groups, interviews, and/or surveys to understand educational needs among key stakeholders-participants, providers, and/or study staff. Together, these studies highlighted the need for tools that address the perceived benefit/value of PRS, types of education/support needed, accessibility, and PRS-related knowledge and understanding. Based on findings from these preliminary studies, the network harmonized training initiatives and formal/informal educational resources. This paper summarizes eMERGE's collective approach to assessing educational needs and developing educational approaches for primary stakeholders. It discusses challenges encountered and solutions provided.


Subject(s)
Electronic Health Records , Ethnicity , Adult , Humans , Child , Minority Groups , Risk Factors , Genomics
6.
Circ Genom Precis Med ; 16(2): e003816, 2023 04.
Article in English | MEDLINE | ID: mdl-37071725

ABSTRACT

BACKGROUND: The implications of secondary findings detected in large-scale sequencing projects remain uncertain. We assessed prevalence and penetrance of pathogenic familial hypercholesterolemia (FH) variants, their association with coronary heart disease (CHD), and 1-year outcomes following return of results in phase III of the electronic medical records and genomics network. METHODS: Adult participants (n=18 544) at 7 sites were enrolled in a prospective cohort study to assess the clinical impact of returning results from targeted sequencing of 68 actionable genes, including LDLR, APOB, and PCSK9. FH variant prevalence and penetrance (defined as low-density lipoprotein cholesterol >155 mg/dL) were estimated after excluding participants enrolled on the basis of hypercholesterolemia. Multivariable logistic regression was used to estimate the odds of CHD compared to age- and sex-matched controls without FH-associated variants. Process (eg, referral to a specialist or ordering new tests), intermediate (eg, new diagnosis of FH), and clinical (eg, treatment modification) outcomes within 1 year after return of results were ascertained by electronic health record review. RESULTS: The prevalence of FH-associated pathogenic variants was 1 in 188 (69 of 13,019 unselected participants). Penetrance was 87.5%. The presence of an FH variant was associated with CHD (odds ratio, 3.02 [2.00-4.53]) and premature CHD (odds ratio, 3.68 [2.34-5.78]). At least 1 outcome occurred in 92% of participants; 44% received a new diagnosis of FH and 26% had treatment modified following return of results. CONCLUSIONS: In a multisite cohort of electronic health record-linked biobanks, monogenic FH was prevalent, penetrant, and associated with presence of CHD. Nearly half of participants with an FH-associated variant received a new diagnosis of FH and a quarter had treatment modified after return of results. These results highlight the potential utility of sequencing electronic health record-linked biobanks to detect FH.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Hyperlipoproteinemia Type II , Adult , Humans , Proprotein Convertase 9/genetics , Electronic Health Records , Penetrance , Prevalence , Prospective Studies , Risk Factors , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Coronary Artery Disease/genetics , Heart Disease Risk Factors , Genomics
7.
Sci Rep ; 13(1): 1971, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737471

ABSTRACT

The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practices to address challenges based on existing evidence and/or eMERGE experience; and (3) opportunities for future research. Adding NLP resulted in improved, or the same, precision and/or recall for all but one algorithm. Portability, phenotyping workflow/process, and technology were major themes. With NLP, development and validation took longer. Besides portability of NLP technology and algorithm replicability, factors to ensure success include privacy protection, technical infrastructure setup, intellectual property agreement, and efficient communication. Workflow improvements can improve communication and reduce implementation time. NLP performance varied mainly due to clinical document heterogeneity; therefore, we suggest using semi-structured notes, comprehensive documentation, and customization options. NLP portability is possible with improved phenotype algorithm performance, but careful planning and architecture of the algorithms is essential to support local customizations.


Subject(s)
Electronic Health Records , Natural Language Processing , Genomics , Algorithms , Phenotype
8.
Genet Med ; 25(4): 100006, 2023 04.
Article in English | MEDLINE | ID: mdl-36621880

ABSTRACT

PURPOSE: Assessing the risk of common, complex diseases requires consideration of clinical risk factors as well as monogenic and polygenic risks, which in turn may be reflected in family history. Returning risks to individuals and providers may influence preventive care or use of prophylactic therapies for those individuals at high genetic risk. METHODS: To enable integrated genetic risk assessment, the eMERGE (electronic MEdical Records and GEnomics) network is enrolling 25,000 diverse individuals in a prospective cohort study across 10 sites. The network developed methods to return cross-ancestry polygenic risk scores, monogenic risks, family history, and clinical risk assessments via a genome-informed risk assessment (GIRA) report and will assess uptake of care recommendations after return of results. RESULTS: GIRAs include summary care recommendations for 11 conditions, education pages, and clinical laboratory reports. The return of high-risk GIRA to individuals and providers includes guidelines for care and lifestyle recommendations. Assembling the GIRA required infrastructure and workflows for ingesting and presenting content from multiple sources. Recruitment began in February 2022. CONCLUSION: Return of a novel report for communicating monogenic, polygenic, and family history-based risk factors will inform the benefits of integrated genetic risk assessment for routine health care.


Subject(s)
Genome , Genomics , Humans , Prospective Studies , Genomics/methods , Risk Factors , Risk Assessment
9.
Annu Rev Genomics Hum Genet ; 22: 219-238, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34038146

ABSTRACT

Recent advances in genomic technology and widespread adoption of electronic health records (EHRs) have accelerated the development of genomic medicine, bringing promising research findings from genome science into clinical practice. Genomic and phenomic data, accrued across large populations through biobanks linked to EHRs, have enabled the study of genetic variation at a phenome-wide scale. Through new quantitative techniques, pleiotropy can be explored with phenome-wide association studies, the occurrence of common complex diseases can be predicted using the cumulative influence of many genetic variants (polygenic risk scores), and undiagnosed Mendelian syndromes can be identified using EHR-based phenotypic signatures (phenotype risk scores). In this review, we trace the role of EHRs from the development of genome-wide analytic techniques to translational efforts to test these new interventions to the clinic. Throughout, we describe the challenges that remain when combining EHRs with genetics to improve clinical care.


Subject(s)
Electronic Health Records , Genome-Wide Association Study , Genomics , Humans , Phenotype , Risk Factors
10.
Am J Reprod Immunol ; 80(4): e13020, 2018 10.
Article in English | MEDLINE | ID: mdl-29984475

ABSTRACT

PROBLEM: GDM has been associated with disturbances in iron homeostasis and exaggerated immune activation. We sought to investigate the extent to which placental iron storage and macrophage accumulations were altered in GDM. METHOD OF STUDY: We conducted a retrospective, case-control study of archived placental tissues obtained from 22 pregnancies complicated by GDM and 22 unaffected controls. Controls were matched to cases based on maternal age, gestational age at birth, and method of delivery. Placental tissues were assessed for altered histology and CD68 and CD163 staining. Tissue iron was assessed using Prussian blue staining. RESULTS: Maternal hematocrit levels were higher in GDM participants compared to controls (P = 0.02). The presence of meconium-laden macrophages was significantly greater within the amnion of GDM cases (adjusted odds ratio (OR) 12.51). Although the total abundance of CD68-expressing macrophages was not significantly different between groups, we detected a significantly greater abundance of CD163 expression within the chorion and decidua of cases. The total area staining positive for iron was 24% (95% confidence intervals of 2%-46%) greater in GDM placentae versus controls. CONCLUSION: GDM is associated with altered placental histology and increases in meconium-laden macrophages. Greater iron stores within the placentae of women with GDM is consistent with reports that iron excess is associated with an increased risk for GDM. The higher level of expression of CD163 on macrophage-like cells of the chorion and decidua in GDM suggests an increase in M2-like macrophages. Overall, our results add to growing evidence that GDM has direct effects on placental structure.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Diabetes, Gestational/pathology , Iron/metabolism , Macrophages/immunology , Meconium/metabolism , Placenta/pathology , Receptors, Cell Surface/metabolism , Case-Control Studies , Female , Hematocrit , Humans , Pregnancy , Retrospective Studies
11.
Pediatr Pulmonol ; 53(6): 787-795, 2018 06.
Article in English | MEDLINE | ID: mdl-29665312

ABSTRACT

OBJECTIVE: Delineate risk factors associated with severe hypoxemia (O2 sat ≤87%) in infants and children younger than 2 years hospitalized with single pathogen HRV infection. STUDY DESIGN: Prospective study in a yearly catchment population of 56 560 children <2 years old between 2011 and 2013 in Argentina. All children with respiratory signs and O2 sat <93% on admission were included. HRV infections were identified by reverse transcriptase-polymerase chain reaction. Epidemiologic, clinical, viral, and immunological risk factors were assessed. RESULTS: Among 5012 hospitalized patients, HRV was detected as a single pathogen in 347 (6.92%) subjects. Thirty-two (9.2%) had life-threatening disease. Traditional risk factors for severe bronchiolitis did not affect severity of illness. HRV viral load, HRV groups, and type II and III interferons did not associate with severe hypoxemia. Interleukin-13 Levels in respiratory secretions at the time of admission (OR = 7.43 (3-18.4); P < 0.001 for IL-13 >10 pg/mL) predisposed to life-threatening disease. CONCLUSIONS: Targeted interventions against IL-13 should be evaluated to decrease severity of HRV illness in infancy and early childhood.


Subject(s)
Bronchiolitis/immunology , Hypoxia/immunology , Interleukin-13/immunology , Picornaviridae Infections/immunology , Respiratory Tract Infections/immunology , Rhinovirus , Argentina/epidemiology , Bronchiolitis/epidemiology , Bronchiolitis/virology , Female , Hospitalization , Humans , Hypoxia/epidemiology , Hypoxia/virology , Infant , Infant, Newborn , Male , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Prospective Studies , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology
12.
Article in English | MEDLINE | ID: mdl-30637122

ABSTRACT

BACKGROUND: The Vanderbilt Institute for Clinical and Translational Research piloted the development of Project PLACENTA (PathLink Acquired gEstatioNal Tissue bAnk). This project investigated the feasibility of a fresh gestational tissue biobank, which provides tissue linked to electronic medical records for investigators interested in maternal-fetal health. METHODS: We developed a pipeline for collection of placental tissue from Labor and Delivery within approximately 30 minutes of delivery. An email alert was developed, to signal delivery, with the ability to specifically flag patients with certain phenotypic traits. Once collected, 4 to 8 mm punch biopsy cores were snap frozen and subsequently used for DNA, RNA and protein extraction. Tissue was also collected for Formalin Fixed Paraffin Embedded (FFPE) histology, flow cytometry, and quality control measures. RESULTS: Of 60 deliveries using the email notification system, 25 (42%) were sent to Pathology or assigned to other research protocols and were not available for collection, 10 (16%) were discarded prior to arrival at Labor and Delivery, and 25 (42%) were available for collection. Twenty placentas were collected and averaged 38 minutes per collection. DNA extraction yielded an average of 53 µg/µl per sample and RNA extraction yielded 679 ng/µl on average per sample. Proteomic studies showed no degradation of protein, abundant and similar quantities of protein across samples and differentiation between the amnion, decidua, and villi. Histological studies showed good quality for interpretation and occasional pathology including multifocal chronic villitis, meconium laden macrophages, and Stage 2 acute chorioamnionitis. Flow cytometry demonstrated good cell viability after isolation.

13.
J Virol Methods ; 211: 64-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25286177

ABSTRACT

Human rhinoviruses (RV) are associated with the majority of viral respiratory illnesses in infants, children and adults. Over the last several years, researchers have begun to sequence the many different species and strains of RV in order to determine if certain species were associated with increased disease severity. There are a variety of techniques employed to prepare samples for sequencing. One method utilizes plasmid-cloning, which is expensive and takes several hours to complete. Recently, some investigators have instead used direct sequencing to sequence RV strains, allowing for omission of the time- and labor-intensive cloning step. This study formally compares and contrasts the sequencing results obtained from plasmid-cloning and direct Sanger sequencing of a 500 base pair PCR product covering the VP4/VP2 region of RV. A slightly longer sequence (by 65 base pairs on average) was obtained when specimens were plasmid-cloned, and the sequences were 86% similar. After trimming the extra base pairs from the cloned sequences, the sequences were 99.7% identical. Overall success of directly sequencing samples was similar to that of cloning, 5% on average failed for each technique. Therefore, in many instances, directly sequencing samples may be considered in lieu of the more expensive and time-consuming plasmid-cloning technique.


Subject(s)
RNA, Viral/genetics , Rhinovirus/genetics , Sequence Analysis, DNA/methods , Cloning, Molecular , Humans , Plasmids , RNA, Viral/isolation & purification , Rhinovirus/classification , Rhinovirus/isolation & purification , Virology/methods
14.
Article in English | MEDLINE | ID: mdl-29152589

ABSTRACT

BACKGROUND: Asthma and wheezing account for a substantial disease burden around the world. Very low birth weight (VLBW, <1500 grams) infants are at an increased risk for the development of severe acute respiratory illness (ARI) and recurrent wheeze/asthma. The role of respiratory viruses in asthma predisposition in premature infants is not well understood. Preliminary evidence suggests that infection with human rhinovirus (RV) early in life may contribute to greater burden of asthma later in life. METHODS: A prospective cohort study of premature VLBW infants from Buenos Aires, Argentina, was enrolled year-round during a three-year period in the neonatal intensive care unit and followed during every ARI and with monthly well visits during the first year of life. Longitudinal follow-up up until age five years is ongoing. RESULTS: This report describes the objectives, design, and recruitment results of this prospective cohort. Two hundred and five patients were enrolled from August 2011 through January 2014, and follow-up is ongoing. A total of 319 ARI episodes were observed from August 2011 to July 2014, and 910 well visits occurred during this time period. CONCLUSIONS: The Argentina Premature Asthma and Respiratory Team (APART) is a unique cohort consisting of over 200 patients and over 1200 specimens who have been and will continue to be followed intensively from NICU discharge to capture baseline risk factors and every ARI, with interceding well visits during the first year of life, as well as longitudinal follow-up to age 5 years for asthma and atopy outcomes.

15.
J Allergy Clin Immunol ; 131(1): 69-77.e1-6, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23146382

ABSTRACT

BACKGROUND: Human rhinoviruses (HRVs) cause common colds, and the recently discovered HRV-C is increasingly associated with lower respiratory illness among populations such as children and asthmatic patients. OBJECTIVE: To determine how HRV-C is associated with respiratory illness and to evaluate changes in prevalence and species over 2 decades. METHODS: A prospective study of children younger than 5 years was performed at the Vanderbilt Vaccine Clinic over a 21-year period. Nasal-wash specimens from children presenting with upper or lower respiratory illness at acute care visits were tested for HRV and HRV-positives genotyped. Demographic and clinical features were compared between children with or without HRV, and with different HRV species. RESULTS: HRV was detected in 190 of 527 (36%) specimens from a population of 2009 children from 1982 through 2003. Of these, 36% were HRV-C. Age (P = .039) and month of illness (P < .001) were associated with HRV infection and HRV species. HRV-C was significantly associated with lower respiratory illness, compared with HRV-A (P = .014). HRV-A and HRV-C prevalence fluctuated throughout the 21-year period; HRV-C was more prevalent during winter (P = .058). CONCLUSIONS: HRV-C is not a new virus but has been significantly associated with childhood lower respiratory illness in this population for several decades. Temporal changes in virus prevalence occur, and season may predict virus species. Our findings have implications for diagnostic, preventive, and treatment strategies due to the variation in disease season and severity based on species of HRV infection.


Subject(s)
Common Cold/epidemiology , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics , Age Factors , Female , Humans , Infant , Male , Molecular Sequence Data , Phylogeny , Prevalence , Prospective Studies , Rhinovirus/classification , Seasons
16.
Fly (Austin) ; 3(2): 143-50, 2009.
Article in English | MEDLINE | ID: mdl-19242114

ABSTRACT

Activation of the immune system is beneficial in defending against pathogens, but may also have costly side effects on an organism's fitness. In this study we examine the fitness consequences of immune challenge in female Drosophila melanogaster by examining both direct (within generation) and indirect (between generations) costs and benefits of immune challenge. Though passing immunity to offspring has been studied in mammals for many years, only recently have researchers found evidence for a cross-generational priming response in invertebrates. By examining both potential fitness costs and benefits in the next generation, we were able to determine what effect immune challenge has on fitness. In agreement with other studies, we found a direct cost to infection, where immune challenged females laid fewer eggs than unchallenged females in two of the three lines we examined. In addition, we found some evidence for indirect costs. Offspring from immune challenged mothers had shorter lifespans than those from unchallenged mothers in two of the three lines. Interestingly, we do not see any effect of maternal immune challenge on offspring's ability to overcome an infection, nor do we see an effect on other fitness traits measured, including egg size, egg-adult viability and offspring resistance to oxidative stress. While previous studies in bumblebees and beetles have demonstrated cross-generation priming, our results suggest that it may not be a general phenomenon, and more work is needed to determine how widespread it is.


Subject(s)
Drosophila melanogaster/immunology , Reproduction/immunology , Animals , Drosophila melanogaster/microbiology , Female , Lactococcus lactis/physiology , Male , Ovum/physiology , Pseudomonas aeruginosa/physiology
17.
J Insect Physiol ; 54(1): 297-308, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17981291

ABSTRACT

Drosophila melanogaster is widely used to study immune system function in insects. However, little work has been done in D. melanogaster on the effect of temperature on the immune system. Here we describe experiments that demonstrate that cooler temperatures enhance survival after infection and alter expression of immune-related genes in flies. This effect appears to be due not only to the fact that colder temperatures slow down bacterial growth, but also to the beneficial effects of cooler temperature on immune function. We explore the possibility that heat shock proteins, and in particular, Hsp83, may improve immune function at cool temperatures. We have long known that temperature can alter immune responses against microbial pathogens in insects. The approach described here allows us to determine whether this effect is due primarily to temperature-specific effects on the host or on its pathogen. These results suggest that both may be important.


Subject(s)
Bacteria/pathogenicity , Drosophila melanogaster/immunology , Drosophila melanogaster/microbiology , Gene Expression Regulation/immunology , Temperature , Animals , Colony Count, Microbial , DNA Primers , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Female , Heat-Shock Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Survival Analysis , Time Factors
18.
Proc Biol Sci ; 274(1614): 1211-7, 2007 May 07.
Article in English | MEDLINE | ID: mdl-17311779

ABSTRACT

Reproductive costs are an essential component of evolutionary theory. For instance, an increase in reproduction is generally coupled with a decrease in immunocompetence shortly after mating. However, recent work in Drosophila melanogaster suggests that the potential to mount an immune response, as measured by the levels of immune gene expression, increases after mating. These data are in contrast to previous studies, which suggest that mating can reduce a fly's ability to survive an actual bacterial challenge (realized immunity). This pattern may be driven by some aspect of mating, independent of resource limitation, which reduces immune function by inhibiting the effective deployment of immune gene products. Though several studies have examined both the potential and the realized immunity after mating, none have examined these immune measures simultaneously. Here, we examined the link between the potential and the realized immunity in a sterile mutant of D. melanogaster. Shortly after mating, we found that female immune gene expression was high, but survival against infection was low. Surprisingly, this pattern was reversed within 24 h. Thus, estimates of immunity based on gene expression do not appear to reflect an actual ability to defend against pathogens in the hours following copulation. We discuss the possible mechanisms that may account for this pattern.


Subject(s)
Biological Evolution , Drosophila melanogaster/immunology , Gene Expression Regulation/immunology , Sexual Behavior, Animal/physiology , Animals , Drosophila melanogaster/microbiology , Drosophila melanogaster/physiology , Female , Pseudomonas aeruginosa/immunology , Survival Analysis , Time Factors
19.
Philos Trans R Soc Lond B Biol Sci ; 361(1466): 287-99, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16612888

ABSTRACT

We describe a graphical model of interlocus coevolution used to distinguish between the interlocus sexual conflict that leads to sexually antagonistic coevolution, and the intrinsic conflict over mating rate that is an integral part of traditional models of sexual selection. We next distinguish the 'laboratory island' approach from the study of both inbred lines and laboratory populations that are newly derived from nature, discuss why we consider it to be one of the most fitting forms of laboratory analysis to study interlocus sexual conflict, and then describe four experiments using this approach with Drosophila melanogaster. The first experiment evaluates the efficacy of the laboratory model system to study interlocus sexual conflict by comparing remating rates of females when they are, or are not, provided with a spatial refuge from persistent male courtship. The second experiment tests for a lag-load in males that is due to adaptations that have accumulated in females, which diminish male-induced harm while simultaneously interfering with a male's ability to compete in the context of sexual selection. The third and fourth experiments test for a lag-load in females owing to direct costs from their interactions with males, and for the capacity for indirect benefits to compensate for these direct costs.


Subject(s)
Biological Evolution , Conflict, Psychological , Drosophila melanogaster/genetics , Models, Genetic , Sexual Behavior, Animal/physiology , Animals , Drosophila melanogaster/physiology , Female , Genetics, Population , Male
20.
Proc Natl Acad Sci U S A ; 102 Suppl 1: 6527-34, 2005 May 03.
Article in English | MEDLINE | ID: mdl-15851669

ABSTRACT

One of Ernst Mayr's legacies is the consensus that the allopatry model is the predominant mode of speciation in most sexually reproducing lineages. In this model, reproductive isolation develops as a pleiotropic byproduct of the genetic divergence that develops among physically isolated populations. Presently, there is no consensus concerning which, if any, evolutionary process is primarily responsible for driving the specific genetic divergence that leads to reproductive isolation. Here, we focus on the hypothesis that inter-locus antagonistic coevolution drives rapid genetic divergence among allopatric populations and thereby acts as an important "engine" of speciation. We assert that only data from studies of experimental evolution, rather than descriptive patterns of molecular evolution, can provide definitive evidence for this hypothesis. We describe and use an experimental approach, called hemiclonal analysis, that can be used in the Drosophila melanogaster laboratory model system to simultaneously screen nearly the entire genome for both standing genetic variation within a population and the net-selection gradient acting on the variation. Hemiclonal analysis has four stages: (i) creation of a laboratory "island population"; (ii) cytogenetic cloning of nearly genome-wide haplotypes to construct hemiclones; (iii) measurement of additive genetic variation among hemiclones; and (iv) measurement of the selection gradient acting on phenotypic variation among hemiclones. We apply hemiclonal analysis to test the hypothesis that there is ongoing antagonistic coevolution between the sexes in the D. melanogaster laboratory model system and then discuss the relevance of this analysis to natural systems.


Subject(s)
Biological Evolution , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Animals , Genetic Variation/genetics , Geography , Selection, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...