Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(7): e100588, 2014.
Article in English | MEDLINE | ID: mdl-24991804

ABSTRACT

Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.


Subject(s)
Forests , Models, Biological , Reindeer/physiology , Seasons , Tundra , Alaska , Animals , Yukon Territory
2.
Aquat Toxicol ; 144-145: 172-85, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24184472

ABSTRACT

Recent findings have shown that deep-water fish from coastal areas may contain elevated levels of mercury (Hg). Tusk (Brosme brosme) was collected from six locations in Hardangerfjord, a fjord system where the inner parts are contaminated by metals due to historic industrial activity. ICPMS was used to determine the accumulated levels of metals (Hg, MeHg, Cd, Pb, As, and Se) in the fish, whereas oxidative status of the liver was assessed by measuring TBARS, vitamin C, vitamin E and catalase activity. To find out whether accumulated Hg triggers toxicologically relevant transcriptional responses and in order to gain genomic knowledge from a non-model species, the liver transcriptome of the gadoid fish was sequenced and assembled, and RNA-seq and RT-qPCR were used to screen for effects of Hg. The results showed high levels of accumulated Hg in tusk liver, probably reflecting an adaptation to deep-water life history, and only a weak declining outward fjord gradient of Hg concentration in tusk liver. MeHg only accounted for about 17% of total Hg in liver, suggesting hepatotoxicity of both inorganic and organic Hg. Pathway analysis suggested an effect of Hg exposure on lipid metabolism and beta-oxidation in liver. Oxidative stress markers glutathione peroxidase 1 and ferritin mRNA, as well as vitamin C and vitamin E (alpha and gamma tocopherol) showed a significant correlation with accumulated levels of Hg. Many transcripts of genes encoding established markers for Hg exposure were co-regulated in the fish. In conclusion, tusk from Hardangerfjord contains high levels of Hg, with possible hepatic effects on lipid metabolism and oxidative stress.


Subject(s)
Environmental Monitoring , Gadiformes , Liver/drug effects , Mercury/analysis , Mercury/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Animals , Gadiformes/metabolism , Lipid Metabolism/drug effects , Oxidation-Reduction/drug effects
3.
Vet Res ; 44: 42, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23763792

ABSTRACT

Avian influenza virus (AIV) is enzootic to wild birds, which are its natural reservoir. The virus exhibits a large degree of genetic diversity and most of the isolated strains are of low pathogenicity to poultry. Although AIV is nearly ubiquitous in wild bird populations, highly pathogenic H5N1 subtypes in poultry have been the focus of most modeling efforts. To better understand viral ecology of AIV, a predictive model should 1) include wild birds, 2) include all isolated subtypes, and 3) cover the host's natural range, unbounded by artificial country borders. As of this writing, there are few large-scale predictive models of AIV in wild birds. We used the Random Forests algorithm, an ensemble data-mining machine-learning method, to develop a global-scale predictive map of AIV, identify important predictors, and describe the environmental niche of AIV in wild bird populations. The model has an accuracy of 0.79 and identified northern areas as having the highest relative predicted risk of outbreak. The primary niche was described as regions of low annual rainfall and low temperatures. This study is the first global-scale model of low-pathogenicity avian influenza in wild birds and underscores the importance of largely unstudied northern regions in the persistence of AIV.


Subject(s)
Disease Outbreaks/veterinary , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/epidemiology , Animals , Birds , Ecosystem , Genetic Variation , Geographic Mapping , Geography , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/virology , Models, Biological , Phylogeny , Prevalence , Risk Assessment
4.
Integr Comp Biol ; 51(4): 608-22, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21873643

ABSTRACT

Populations of the snow crab (Chionoecetes opilio) are widely distributed on high-latitude continental shelves of the North Pacific and North Atlantic, and represent a valuable resource in both the United States and Canada. In US waters, snow crabs are found throughout the Arctic and sub-Arctic seas surrounding Alaska, north of the Aleutian Islands, yet commercial harvest currently focuses on the more southerly population in the Bering Sea. Population dynamics are well-monitored in exploited areas, but few data exist for populations further north where climate trends in the Arctic appear to be affecting species' distributions and community structure on multiple trophic levels. Moreover, increased shipping traffic, as well as fisheries and petroleum resource development, may add additional pressures in northern portions of the range as seasonal ice cover continues to decline. In the face of these pressures, we examined the ecological niche and population distribution of snow crabs in Alaskan waters using a GIS-based spatial modeling approach. We present the first quantitative open-access model predictions of snow-crab distribution, abundance, and biomass in the Chukchi and Beaufort Seas. Multi-variate analysis of environmental drivers of species' distribution and community structure commonly rely on multiple linear regression methods. The spatial modeling approach employed here improves upon linear regression methods in allowing for exploration of nonlinear relationships and interactions between variables. Three machine-learning algorithms were used to evaluate relationships between snow-crab distribution and environmental parameters, including TreeNet, Random Forests, and MARS. An ensemble model was then generated by combining output from these three models to generate consensus predictions for presence-absence, abundance, and biomass of snow crabs. Each algorithm identified a suite of variables most important in predicting snow-crab distribution, including nutrient and chlorophyll-a concentrations in overlying waters, temperature, salinity, and annual sea-ice cover; this information may be used to develop and test hypotheses regarding the ecology of this species. This is the first such quantitative model for snow crabs, and all GIS-data layers compiled for this project are freely available from the authors, upon request, for public use and improvement.


Subject(s)
Brachyura/physiology , Models, Biological , Alaska , Animals , Arctic Regions , Biomass , Environment , Geographic Information Systems , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...