Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 2(9): 2515-20, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20738090

ABSTRACT

Polymers in space may be subjected to a barrage of incident atoms, photons, and/or ions. Atomic layer deposition (ALD) techniques can produce films that mitigate many of the current challenges for space polymers. We have studied the efficacy of various ALD coatings to protect Kapton polyimide, FEP Teflon, and poly(methyl methacrylate) films from atomic-oxygen and vacuum ultraviolet (VUV) attack. Atomic-oxygen and VUV studies were conducted with the use of a laser-detonation source for hyperthermal O atoms and a D2 lamp as a source of VUV light. These studies used a quartz crystal microbalance (QCM) to monitor mass loss in situ, as well as surface profilometry and scanning electron microscopy to study the surface recession and morphology changes ex situ. Al2O3 ALD coatings protected the underlying substrates from atomic-oxygen attack, and the addition of TiO2 coatings protected the substrates from VUV-induced damage. The results indicate that ALD coatings can simultaneously protect polymers from oxygen-atom erosion and VUV radiation damage.


Subject(s)
Extraterrestrial Environment , Polymers/chemistry , Polymers/radiation effects , Materials Testing , Ultraviolet Rays
2.
ACS Appl Mater Interfaces ; 1(3): 653-60, 2009 Mar.
Article in English | MEDLINE | ID: mdl-20355987

ABSTRACT

A combination of beam-surface-scattering, quartz-crystal-microbalance, and surface-recession experiments was conducted to study the effects of various combinations of O atoms [in the O((3)P) ground state], Ar atoms, and vacuum ultraviolet (VUV) light on fluorinated ethylene-propylene copolymer (FEP) Teflon and poly(methyl methacrylate) (PMMA). A laser-breakdown source was used to create hyperthermal beams containing O and O(2) or Ar. A D(2) lamp provided a source of VUV light. O atoms with 4 eV of translational energy or less did not react with a pristine FEP Teflon surface. Volatile O-containing reaction products were observed when the O-atom energy was higher than 4.5 eV, and the signal increased with the O-atom energy. Significant erosion of FEP Teflon ( approximately 20% of Kapton H) was observed when it was exposed to the hyperthermal O/O(2) beam with an average O-atom energy of 5.4 eV. FEP Teflon and PMMA that were exposed to VUV light alone exhibited much less mass loss. Collision-induced dissociation by hyperthermal Ar atoms also caused mass loss, similar in magnitude to that caused by VUV light. There were no observed synergistic effects when VUV light or Ar bombardment was combined with O/O(2) exposure. For both FEP Teflon and PMMA, the erosion yields caused by simultaneous exposure to O/O(2) and either VUV light or Ar atoms could be approximately predicted by adding the erosion yield caused by O/O(2), acting individually, to the erosion yield caused by the individual action of either VUV light or Ar atoms.

3.
J Chem Phys ; 121(14): 6855-60, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15473743

ABSTRACT

The optical spectrum of diatomic RuC has been recorded from 17 800 to 24 200 cm(-1). Three previously unidentified excited electronic states were analyzed and identified as having Omega' = 0, Omega' = 2, and Omega' = 3. The Omega' = 3 state was determined to be a 3Delta3 state that is suggested to arise from a mixture of the 10sigma(2)11sigma(2)5pi(3)2delta(3)12sigma(1)6pi(1) and 10sigma(2)11sigma(1)5pi(3)2delta(3)12sigma(2)6pi(1) electronic configurations. Three additional bands belonging to the previously observed [18.1] (1)Pi<--X (1)Sigma(+) system were analyzed to obtain B(e) (')=0.558 244(48) cm(-1), alpha(e) (')=0.004 655(27) cm(-1), omegae' = 887.201(37) cm(-1), and omega(e) 'xe' = 5.589(7) cm(-1) for the 102Ru 12C isotopomer (1sigma error limits). A Rydberg-Klein-Rees analysis was then performed using the determined spectroscopic constants of the [18.1] 1Pi state, and similar analyses were performed for the previously observed states. The resulting potential energy curves are provided for the 100Ru 12C, 101Ru 12C, 102Ru 12C, and 104Ru 12C isotopic species.

SELECTION OF CITATIONS
SEARCH DETAIL
...