Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 772651, 2021.
Article in English | MEDLINE | ID: mdl-34956134

ABSTRACT

Bacterial vitality after water disinfection treatment was investigated using bio-orthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM). Protein synthesis activity and DNA integrity (BONCAT-SYBR Green) was monitored in Escherichia coli monocultures and in natural marine samples after UV irradiation (from 25 to 200 mJ/cm2) and heat treatment (from 15 to 45 min at 55°C). UV irradiation of E. coli caused DNA degradation followed by the decrease in protein synthesis within a period of 24 h. Heat treatment affected both DNA integrity and protein synthesis immediately, with an increased effect over time. Results from the BONCAT method were compared with results from well-known methods such as plate counts (focusing on growth) and LIVE/DEAD™ BacLight™ (focusing on membrane permeability). The methods differed somewhat with respect to vitality levels detected in bacteria after the treatments, but the results were complementary and revealed that cells maintained metabolic activity and membrane integrity despite loss of cell division. Similarly, analysis of protein synthesis in marine bacteria with BONCAT displayed residual activity despite inability to grow or reproduce. Background controls (time zero blanks) prepared using different fixatives (formaldehyde, isopropanol, and acetic acid) and several different bacterial strains revealed that the BONCAT protocol still resulted in labeled, i.e., apparently active, cells. The reason for this is unclear and needs further investigation to be understood. Our results show that BONCAT and FCM can detect, enumerate, and differentiate bacterial cells after physical water treatments such as UV irradiation and heating. The method is reliable to enumerate and explore vitality of single cells, and a great advantage with BONCAT is that all proteins synthesized within cells are analyzed, compared to assays targeting specific elements such as enzyme activity.

2.
Front Microbiol ; 11: 1929, 2020.
Article in English | MEDLINE | ID: mdl-33013733

ABSTRACT

In this study, we have combined bioorthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM) analysis, and we demonstrate the applicability of the method for marine prokaryotes. Enumeration of active marine bacteria was performed by combining the DNA stain SYBR Green with detection of protein production with BONCAT. After optimization of incubation condition and substrate concentration on monoculture of Escherichia coli, we applied and modified the method to natural marine samples. We found that between 10 and 30% of prokaryotes in natural communities were active. The method is replicable, fast, and allow high sample throughput when using FCM. We conclude that the combination of BONCAT and FCM is an alternative to current methods for quantifying active populations in aquatic environments.

3.
Mar Pollut Bull ; 149: 110528, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31470209

ABSTRACT

In this study, we used flow cytometry to examine how incubation in dark versus light affects the vitality and viability of UV-irradiated Tetraselmis suecica. High UV doses (300 and 400 mJ/cm2) affected the esterase activity, membrane permeability, and chlorophyll content more when the subsequent incubation took place in light. For non- or low UV dose (100 and 200 mJ/cm2)-treated cells, incubation in light resulted in cell regrowth as compared to incubation in dark. Damaged cells (enzymatically active but with permeable membranes) did not recover when incubated under light or dark conditions. Exposure to light reduces the evaluation time of any given ballast water treatment, as viable cells will be detected at an earlier stage and the vitality is more affected. When evaluating the performance of UV-based ballast water treatment systems (BWTS), these results can be useful for type approval using T. suecica as a test organism in the test regime.


Subject(s)
Chlorophyta/physiology , Chlorophyta/radiation effects , Water Purification/methods , Chlorophyll/metabolism , Darkness , Dose-Response Relationship, Radiation , Esterases/metabolism , Flow Cytometry/methods , Fluoresceins , Light , Phytoplankton/physiology , Phytoplankton/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...