Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 93(2): 411-414, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29961969

ABSTRACT

An updated molecular phylogeny of the blenny genus Ophioblennius, with a focus on two geographically disjunct morphotypes observed in Brazil, is presented. The analyses showed that specimens from the north-eastern Brazilian coast are the endemic redlip blenny Ophioblennius trinitatis, but specimens from the southern Brazilian coast are conspecific to an undescribed east Atlantic Ocean (Gulf of Guinea) species, previously unknown in Brazil. Possible explanations for this geographical pattern include: natural larval dispersal and rafting across the Atlantic; an unknown ecological attribute that enabled this species to colonize southern Brazil; oil platforms as introduction vectors.


Subject(s)
Perciformes , Phylogeny , Animals , Atlantic Ocean , Brazil , Geography , Phylogeography
2.
Zootaxa ; 3900(4): 581-91, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25543758

ABSTRACT

Leptohelia flexibilis gen. nov. et sp. nov., the first stylasterid with a combined calcified and non-calcified skeleton, is described from seamounts and the slope off the islands of New Caledonia, in the southwestern Pacific. The new species is distinguished from all other species of the family Stylasteridae by having a non-calcified organic axis, internal to the basal portion of the calcified corallum. The internal axis is flexible and enclosed by a series of up to 10 calcified annuli, allowing passive lateral bending of the colony. Molecular phylogenetic analyses confirm that Leptohelia flexibilis is a stylasterid coral and reveal that the species is closely related to Leptohelia microstylus comb. nov., a southwestern Pacific stylasterid that lacks an internal axis.


Subject(s)
Hydrozoa/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Female , Hydrozoa/anatomy & histology , Hydrozoa/genetics , Hydrozoa/growth & development , Male , Organ Size , Phylogeny
3.
PLoS One ; 9(7): e102094, 2014.
Article in English | MEDLINE | ID: mdl-25029229

ABSTRACT

The disparity in species richness among evolutionary lineages is one of the oldest and most intriguing issues in evolutionary biology. Although geographical factors have been traditionally thought to promote speciation, recent studies have underscored the importance of ecological interactions as one of the main drivers of diversification. Here, we test if differences in species richness of closely related lineages match predictions based on the concept of density-dependent diversification. As radiation progresses, ecological niche-space would become increasingly saturated, resulting in fewer opportunities for speciation. To assess this hypothesis, we tested whether reef fish niche shifts toward usage of low-quality food resources (i.e. relatively low energy/protein per unit mass), such as algae, detritus, sponges and corals are accompanied by rapid net diversification. Using available molecular information, we reconstructed phylogenies of four major reef fish clades (Acanthuroidei, Chaetodontidae, Labridae and Pomacentridae) to estimate the timing of radiations of their subclades. We found that the evolution of species-rich clades was associated with a switch to low quality food in three of the four clades analyzed, which is consistent with a density-dependent model of diversification. We suggest that ecological opportunity may play an important role in understanding the diversification of reef-fish lineages.


Subject(s)
Biodiversity , Coral Reefs , Diet , Evolution, Molecular , Fishes , Animals , Phylogeny
4.
Zookeys ; (158): 1-88, 2011.
Article in English | MEDLINE | ID: mdl-22303109

ABSTRACT

The stylasterid fauna of Alaska is revised, consisting of the description or redescription and illustration of 21 species, one additional subspecies, and a geographically adjacent species: Stylaster venustus. Six new species and one new subspecies are described: Errinopora fisheri, Errinopora undulata, Errinopora disticha, Errinopora dichotoma, Stylaster crassiseptum, Stylaster repandus, and Stylaster parageus columbiensis. Four subspecies are raised to species rank: Stylaster leptostylus, Stylaster trachystomus, Stylaster parageus, and Distichopora japonica, and five species and one subspecies were synonymized. A dichotomous key to the Errinopora species and tabular keys to the Errinopora and Alaskan Stylaster species are provided. The focus of the study was on the stylasterids from Alaska, primarily those from the diverse Aleutian Islands, but also including records from British Columbia. This is the first revisionary work on this fauna since the seminal report by Fisher in 1938.

5.
BMC Evol Biol ; 9: 165, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19604374

ABSTRACT

Correction to Evans, N.M., Lindner, A., Raikova, E.V., Collins, A.G. and Cartwright, P. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the phylum Cnidaria. BMC Evol Biol, 2008, 8:139.


Subject(s)
Cnidaria/genetics , Phylogeny , Animals , Cnidaria/classification , DNA, Ribosomal/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics
6.
PLoS One ; 3(6): e2429, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-18560569

ABSTRACT

Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)--the second most diverse group of hard corals--originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors.


Subject(s)
Anthozoa , Biological Evolution , Marine Biology , Animals , Anthozoa/classification , Base Sequence , DNA Primers , Phylogeny , Polymerase Chain Reaction
7.
BMC Evol Biol ; 8: 139, 2008 05 09.
Article in English | MEDLINE | ID: mdl-18471296

ABSTRACT

BACKGROUND: Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. RESULTS: Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. CONCLUSION: By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.


Subject(s)
Hydrozoa/classification , Phylogeny , Animals , Cnidaria/classification , Cnidaria/genetics , DNA, Ribosomal/genetics , Hydrozoa/genetics , Hydrozoa/growth & development , Life Cycle Stages , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...